
www.manaraa.com

Designing an Algorithm for Role AnalysisbyViktor KunakB.S., University of Novi Sad (2000)Submitted to the Department of Eletrial Engineering and ComputerSienein partial ful�llment of the requirements for the degree ofMaster of Sieneat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 2001 Massahusetts Institute of Tehnology 2001. All rights reserved.
Author .Department of Eletrial Engineering and Computer SieneAugust 20, 2001Certi�ed by. .Martin C. RinardAssoiate ProfessorThesis SupervisorAepted by .Arthur C. SmithChairman, Department Committee on Graduate Students

www.manaraa.com

2

www.manaraa.com

Designing an Algorithm for Role AnalysisbyViktor KunakSubmitted to the Department of Eletrial Engineering and Computer Sieneon August 20, 2001, in partial ful�llment of therequirements for the degree ofMaster of SieneAbstratThis thesis presents a system for speifying onstraints on dynamially hanging ref-erening relationships of heap objets, and an analysis for stati veri�ation of theseonstraints. The onstraint spei�ation system is based on the onept of role. Therole of an objet depends, in large part, on its aliasing relationships with other ob-jets, with the role of eah objet hanging as its aliasing relationships hange. Inthis way roles apture objet and data struture properties suh as unique referenes,membership of objets in data strutures, disjointness of data strutures, absene ofrepresentation exposure, bidiretional assoiations, treeness, and absene or preseneof yles in the heap.Roles generalize linear types by allowing multiple aliases of heap objets thatpartiipate in reursive data strutures. Unlike graph grammars and graph types,roles ontain suÆiently general onstraints to onservatively approximate any datastruture.We give a semantis for mutually reursive role de�nitions and derive propertiesof roles as an invariant spei�ation language. We introdue a programming modelthat allows temporary violations of role onstraints. We desribe a stati role analysisfor verifying that a program onforms to the programming model. The analysis uses�xpoint omputation to synthesize loop invariants in eah proedure.We introdue a proedure interfae spei�ation language and its semantis. Wepresent an interproedural, ompositional, and ontext-sensitive role analysis thatveri�es that a program respets the role onstraints aross proedure alls.Thesis Supervisor: Martin C. RinardTitle: Assoiate Professor

3

www.manaraa.com

4

www.manaraa.com

AknowledgmentsI would like to thank my advisor Martin Rinard for initiating this exiting researhdiretion. He proposed the onept of roles and has been providing the essentialguidane in exploring the large design spae of lightweight program spei�ations.I am grateful to all members of Martin's group for reating a stimulating atmo-sphere for researh. I thank Patrik Lam who dared to join me in the exploration ofroles while the onept was still in its early stage. He helped rystallize ideas of therole analysis and provided a valuable help in its presentation. I thank Brian Demskyfor interesting disussions related to dynami role disovery. I thank Darko Marinovfor valuable ritial omments regarding the onept of roles and role analysis. I thankAlexandru S�alianu for disussions about the interproedural aspets of the pointerand esape analysis. I thank Radu Rugin�a for answering my questions about theontext sensitive pointer analyses, C. Sott Ananian for thoughts on introduing setsand relations into Java, Chandrasekhar Boyapati for his omments on relationshipsof roles with type systems, and William Beebee for disussions about region-basedmemory alloation in Java.Many thanks to Darko, Alexandru, and Maria-Cristina Marinesu for helping mesurvive in the new environment. I also thank my oÆe mates Karen Zee, Patrik Lamand Jonathan Babb for tolerating my ontinuous presene in the oÆe. I thank Jonfor many intriguing hats on a range of topis.I thank my parents and family for all the support they gave me over the previousyears and this year in partiular.

5

www.manaraa.com

6

www.manaraa.com

Contents
1 Introdution 111.1 Overview of Roles . 121.1.1 Role De�nitions . 131.1.2 Roles and Proedure Interfaes 131.2 Contributions . 131.3 Outline of the Thesis . 152 Roles as a Constraint Spei�ation Language 192.1 Abstrat Syntax and Semantis of Roles 192.1.1 Heap Representation . 192.1.2 Role Representation . 192.1.3 Role Semantis . 202.2 Using Roles . 212.3 Some Simple Properties of Roles . 243 A Programming Model 273.1 A Simple Imperative Language . 273.2 Operational Semantis . 283.3 Onstage and O�stage Objets . 303.4 Role Consisteny . 323.4.1 O�stage Consisteny . 323.4.2 Referene Removal Consisteny 323.4.3 Proedure Call Consisteny 323.4.4 Expliit Role Chek . 333.5 Instrumented Semantis . 334 Intraproedural Role Analysis 374.1 Abstration Relation . 374.2 Transfer Funtions . 404.2.1 Expansion . 424.2.2 Contration . 474.2.3 Symboli Exeution . 484.2.4 Node Chek . 497

www.manaraa.com

5 Interproedural Role Analysis 515.1 Proedure Transfer Relations . 515.1.1 Initial Context . 515.1.2 Proedure E�ets . 545.1.3 Semantis of Proedure E�ets 555.2 Verifying Proedure Transfer Relations 575.2.1 Role Graphs at Proedure Entry 575.2.2 Verifying Basi Statements . 585.2.3 Verifying Proedure Postonditions 595.3 Analyzing Call Sites . 595.3.1 Context Mathing . 605.3.2 E�et Instantiation . 625.3.3 Role Reonstrution . 626 Extensions 656.1 Multislots . 656.2 Root Variables . 656.3 Singleton Roles . 666.4 Casading Role Changes . 686.5 Partial Roles . 696.5.1 Partial Roles and Role Sets 706.5.2 Semantis of Partial Roles . 716.5.3 Fixpoint De�nition of the Greatest Role Assignment 726.5.4 Expressibility of Partial Roles 736.5.5 Role Subtyping . 747 Related Work 797.1 Typestate Systems . 797.2 Roles in Objet-Oriented Programming 807.3 Shape Analysis . 827.4 Interproedural Analyses . 847.5 Program Veri�ation . 858 Conlusion 87A Deidability Properties of Roles 89A.1 Roles with Field and Slot Constraints 89A.1.1 Forms of Slot Constraints . 89A.1.2 Equivalene of Original and Generalized Slots 90A.1.3 Eliminating Field Constraints 90A.1.4 Deidability of the Satis�ability Problem 91A.2 Undeidability of Model Inlusion . 92
8

www.manaraa.com

List of Figures1-1 Role Referene Diagram for a Sheduler 121-2 Role De�nitions for a Sheduler . 141-3 Suspend Proedure . 152-1 Roles of Nodes of a Sparse Matrix . 222-2 Sketh of a Two-Level Skip List . 233-1 Syntati Sugar for if and while . 273-2 Semantis of Basi Statements . 293-3 Semantis of Proedure Call . 303-4 Operational Semantis of Expliit Role Chek 333-5 Instrumented Semantis . 344-1 Abstration Relation . 394-2 Simulation Relation Between Abstrat and Conrete Exeution 414-3 Abstrat Exeution ; . 414-4 Expansion Relation . 424-5 Instantiation Relation . 434-6 A Role Graph for an Ayli List . 444-7 Split Relation . 454-8 Contration Relation . 474-9 Normalization . 474-10 Symboli Exeution of Basi Statements 485-1 Initial Context for kill Proedure 535-2 Insert Proedure for Ayli List . 555-3 Insert Proedure with Objet Alloation 565-4 The Set of Role Graphs at Proedure Entry 585-5 Verifying Load, Store, and New Statements 585-6 Proedure Call . 605-7 The Context Mathing Algorithm . 615-8 E�et Instantiation . 635-9 Call Site Role Reonstrution . 646-1 Roles for Cirular List . 676-2 An Instane of Role Delarations . 676-3 Example of a Casading Role Change 689

www.manaraa.com

6-4 Abstrat Exeution for setRoleCasade 696-5 De�nition of a Tree . 706-6 De�nition of a List . 71A-1 A Grid after Role Preserving Modi�ation 94A-2 Roles that Fore Violation of the Commutativity Condition 95

10

www.manaraa.com

Chapter 1IntrodutionTypes apture important properties of the objets that programs manipulate, inreas-ing both the safety and readability of the program. Traditional type systems aptureproperties (suh as the format of data items stored in the �elds of the objet) thatare invariant over the lifetime of the objet. But in many ases, properties that dohange are as important as properties that do not. Reognizing the bene�t of aptur-ing these hanges, researhers have developed systems in whih the type of the objethanges as the values stored in its �elds hange or as the program invokes operationson the objet [84, 83, 20, 91, 92, 11, 40, 26℄. These systems integrate the onept ofhanging objet states into the type system.The fundamental idea in this work is that the state of eah objet also dependson the data strutures in whih it partiipates. Our type system therefore apturesthe referening relationships that determine this data struture partiipation. Asobjets move between data strutures, their types hange to reet their hangingrelationships with other objets. Our system uses roles to formalize the onept ofa type that depends on the referening relationships. Eah role delaration providesomplete aliasing information for eah objet that plays that role|in addition tospeifying roles for the �elds of the objet, the role delaration also identi�es theomplete set of referenes in the heap that refer to the objet. In this way rolesgeneralize linear type systems [87, 6, 56℄ by allowing multiple aliases to be statiallytraked, and extend alias types [82, 88℄ with the ability to speify roles of objetsthat are the soure of aliases.This approah attaks a key diÆulty assoiated with state-based type systems:the need to ensure that any state hange performed using one alias is orretly re-eted in the delared types of the other aliases. Beause eah objet's role identi�esall of its heap aliases, the analysis an verify the orretness of the role informa-tion at all remaining or new heap aliases after an operation hanges the refereningrelationships.Roles apture important objet and data struture properties, improving both thesafety and transpareny of the program. For example, roles allow the programmer toexpress data struture onsisteny properties (with the properties veri�ed by the roleanalysis), to improve the preision of proedure interfae spei�ations (by allowingthe programmer to speify the role of eah parameter), to express preise referen-11

www.manaraa.com

LiveHeader

LiveList

next next

SleepingProc

proc proc

left right

SleepingTree

root

null

next

next

left
right

DeadProc

RunningProc

next

RunningHeader

next
prev

prev
next

next prev

prev

Figure 1-1: Role Referene Diagram for a Shedulering and interation behaviors between objets (by speifying veri�ed roles for objet�elds and aliases), and to express onstraints on the oordinated movements of ob-jets between data strutures (by using the aliasing information in role de�nitions toidentify legal data struture membership ombinations). Roles may also aid programoptimization by providing preise aliasing information.
1.1 Overview of RolesFigure 1-1 presents a role referene diagram for a proess sheduler. Eah box in thediagram denotes a disjoint set of objets of a given role. The labelled arrows betweenboxes indiate possible referenes between the objets in eah set. As the diagramindiates, the sheduler maintains a list of live proesses. A live proess an be eitherrunning or sleeping. The running proesses form a doubly-linked list, while sleepingproesses form a binary tree. Both kinds of proesses have pro referenes from thelive list nodes LiveList. Header objets RunningHeader and SleepingTree simplifyoperations on the data strutures that store the proess objets.As Figure 1-1 shows, data struture partiipation determines the oneptual stateof eah objet. In our example, proesses that partiipate in the sleeping proess treedata struture are lassi�ed as sleeping proesses, while proesses that partiipate inthe running proess list data struture are lassi�ed as running proesses. Moreover,movements between data strutures orrespond to oneptual state hanges|when aproess stops sleeping and starts running, it moves from the sleeping proess tree tothe running proess list. 12

www.manaraa.com

1.1.1 Role De�nitionsFigure 1-2 presents the role de�nitions for the objets in our example.1 Eah rolede�nition spei�es the onstraints that an objet must satisfy to play the role. Fieldonstraints speify the roles of the objets to whih the �elds refer, while slot on-straints identify the number and kind of aliases of the objet.Role de�nitions may also ontain two additional kinds of onstraints: identityonstraints, whih speify paths that lead bak to the objet, and ayliity on-straints, whih speify paths with no yles. In our example, the identity onstraintnext.prev in the RunningPro role spei�es the yli doubly-linked list onstraintthat following the next, then prev �elds always leads bak to the initial objet. Theayli onstraint left, right in the SleepingPro role spei�es that there are noyles in the heap involving only left and right edges. On the other hand, the listof running proesses must be yli beause its nodes an never point to null.The slot onstraints speify the omplete set of heap aliases for the objet. In ourexample, this implies that no proess an be simultaneously running and sleeping.In general, roles an apture data struture onsisteny properties suh as dis-jointness and an prevent representation exposure [14, 22℄. As a data struture de-sription language, roles an naturally speify trees with additional pointers. Rolesan also approximate non-tree data strutures like sparse matries. Beause mostrole onstraints are loal, it is possible to indutively infer them from data strutureinstanes.1.1.2 Roles and Proedure InterfaesProedures speify the initial and �nal roles of their parameters. The suspendproedure in Figure 1-3, for example, takes two parameters: an objet with roleRunningPro p, and the SleepingTree s. The proedure hanges the role of the ob-jet referened by p to SleepingPro whereas the objet referened by s retainsits original role. To perform the role hange, the proedure removes p from itsRunningList data struture and inserts it into the SleepingTree data strutures. If the proedure fails to perform the insertions or deletions orretly, for instaneby leaving an objet in both strutures, the role analysis will report an error.1.2 ContributionsThis thesis makes the following ontributions:� Role Conept: The onept that the state of an objet depends on its refer-ening relationships; spei�ally, that objets with di�erent heap aliases shouldbe regarded as having di�erent states.1In general, eah role de�nition would speify the stati lass of objets that an play that role.To simplify the presentation, we assume that all objets are instanes of a single lass with a set of�elds F . 13

www.manaraa.com

role LiveHeader {fields next : LiveList | null;}role LiveList {fields next : LiveList | null,pro : RunningPro | SleepingPro;slots LiveList.next | LiveHeader.next;ayli next;}role RunningHeader {fields next : RunningPro | RunningHeader,prev : RunningPro | RunningHeader;slots RunningHeader.next | RunningPro.next,RunningHeader.prev | RunningPro.prev;identities next.prev, prev.next;}role RunningPro {fields next : RunningPro | RunningHeader,prev : RunningPro | RunningHeader;slots RunningHeader.next | RunningPro.next,RunningHeader.prev | RunningPro.prev,LiveList.pro;identities next.prev, prev.next;}role SleepingTree {fields root : SleepingPro | null,ayli left, right;}role SleepingPro {fields left : SleepingPro | null,right : SleepingPro | null;slots SleepingPro.left | SleepingPro.right |SleepingTree.root;LiveList.pro;ayli left, right;}role DeadPro { }Figure 1-2: Role De�nitions for a Sheduler
14

www.manaraa.com

proedure suspend(p : RunningPro ->> SleepingPro,s : SleepingTree)loal pp, pn, r;{ pp = p.prev; pn = p.next;r = s.root;p.prev = null; p.next = null;pp.next = pn; pn.prev = pp;s.root = p; p.left = r;setRole(p : SleepingPro);} Figure 1-3: Suspend Proedure� Role Semantis and its Consequenes: It presents a semantis of a lan-guage for de�ning roles. The programmer an use this language to expressdata struture invariants and properties suh as partiipation of objets in datastrutures. We show how roles an be used to ontrol the aliasing of objets, andexpress reahability properties. We show ertain deidability and undeidabilityresults for roles.� Programming Model: It presents a set of role onsisteny rules. Theserules give a programming model for hanging the role of an objet and theirumstanes under whih roles an be temporarily violated.� Proedure Interfae Spei�ation Language: It presents a language forspeifying the initial ontext and e�ets of eah proedure. The e�ets summa-rize the ations of the proedure in terms of the referenes it hanges and theregions of the heap that it a�ets.� Role Analysis Algorithm: It presents an algorithm for verifying that theprogram respets the onstraints given by a set of role de�nitions and proedurespei�ations. The algorithm uses a data-ow analysis to infer intermediatereferening relationships between objets, allowing the programmer to fouson role hanges and proedure interfaes. The analysis an verify ayliityonstraints even if they are temporarily violated. The interproedural analysisveri�es read e�ets as well as \may" and \must" write e�ets by maintaininga �ne grained mapping between the urrent heap and the initial ontext of theproedure.1.3 Outline of the ThesisThe rest of the thesis is organized as follows.In Chapter 2 we introdue the representation of program heap (2.1.1) and therepresentation of role onstraints introdued by the role de�nitions (2.1.2). We for-15

www.manaraa.com

mally de�ne the semantis of roles by giving a riterion for a heap to satisfy the roleonstraints (2.1.3). We then highlight some appliation level properties that an bespei�ed using roles (2.2) and give examples of using roles to desribe data strutures.We give a list of properties (2.3) that show how roles help ontrol aliasing while giv-ing more exibility than linear type systems. We show how to dedue reahabilityproperties from role onstraints and give a riterion for a set of roles to de�ne atree. A more detailed study of the onstraints expressible using roles is delegated toAppendix A, where we prove deidability of the satis�ability problem for a lass ofrole onstraints (A.1.4), and undeidability of the model inlusion for role de�nitions(A.2).In Chapter 3 we introdue a programming model that enables role de�nitions tobe integrated with the program. We introdue a ore programming language withproedures (3.1) and give its operational semantis (3.2). Next we introdue thenotion of onstage and o�stage nodes (3.3) whih de�nes the riterion for temporaryviolations of role onstraints by generalizing heap onsisteny from (2.1.3). As partof the programming model we introdue restritions on programs that simplify lateranalysis and ensure role onsisteny aross proedure alls (3.4). We give the pre-onditions for transitions of the operational semantis that formalize role onsisteny.We then introdue an instrumented semantis that gives the programmer ompleteontrol over the assignment of roles to objets (3.5). This ompletes the desriptionof the programming model, whih is veri�ed by the role analysis.We present the intraproedural role analysis in Chapter 4. We de�ne the abstratrepresentation of onrete heaps alled role graphs and speify the abstration relation(4.1). We then de�ne transfer funtions for the role analysis (4.2). This inludes theexpansion relation (4.2.1) used to instantiate nodes from o�stage to onstage usinginstantiation (4.2.1) and split (4.2.1). We model the movement of nodes o�stage usingthe ontration relation (4.2.2). We also desribe the heks that the role analysisperforms on role graphs to ensure that the program respets the programming model(4.2.3, 4.2.4).In Chapter 5 we generalize the role analysis to the interproedural ase. We�rst introdue proedure interfae spei�ation language (5.1) that desribes initialontext (5.1.1) and e�ets (5.1.2) of eah proedure. We give examples of proe-dure interfaes and de�ne the semantis of initial ontexts (5.1.1) and e�ets (5.1.3).The interproedural analysis extends the intraproedural analysis from Chapter 4 byverifying that eah proedure respets its spei�ation (5.2) and by instantiating pro-edure spei�ations to analyze all sites (5.3). The veri�ation of transfer relationsuses a �ne grained mapping between nodes of the role graph at eah program pointand nodes of the initial ontext. The analysis of all sites needs to establish the map-ping between the urrent role graphs and allee's initial ontext (5.3.1), instantiateallee's e�ets (5.3.2) and then reonstrut the roles of modi�ed non-parameter nodes(5.3.3).In Chapter 6 we present the extensions of the basi role framework desribed inprevious hapters. These extensions allow a statially unbounded number of heapreferenes to objets (6.1), roles de�ned by referenes from loal variables, non-inremental hanges to the role assignment (6.4), and roles for speifying partial16

www.manaraa.com

information about objet's �elds and aliases (6.5). The last setion also outlines asubtyping riterion for partial roles.In Chapter 7 we ompare our work to the previous typestate systems, the propos-als to ontrol the aliasing in objet oriented programming and the term roles as usedin objet modeling and database ommunity. We ompare our role analysis with pro-gram veri�ation and analysis tehniques for dynamially alloated data strutures.Chapter 8 onludes the thesis.

17

www.manaraa.com

18

www.manaraa.com

Chapter 2Roles as a Constraint Spei�ationLanguageIn this hapter we introdue the formal semantis of roles. We then show how to useroles to speify properties of objets and data strutures.2.1 Abstrat Syntax and Semantis of RolesIn this setion, we preisely de�ne what it means for a given heap to satisfy a set ofrole de�nitions. In subsequent setions we will use this de�nition as a starting pointfor a programming model and role analysis.2.1.1 Heap RepresentationWe represent a onrete program heap as a �nite direted graph H with nodes(H)representing objets of the heap and labelled edges representing heap referenes. Agraph edge ho1; f; o2i 2 H denotes a referene with �eld name f from objet o1 toobjet o2. To simplify the presentation, we �x a global set of �elds F and assumethat all objets have the set of �elds F .2.1.2 Role RepresentationLet R denote the set of roles used in role de�nitions, nullR be a speial symbol alwaysdenoting a null objet null, and let R0 = R [fnullRg. We represent eah role as theonjuntion of the following four kinds of onstraints:� Fields: For every �eld name f 2 F we introdue a funtion �eldf : R ! 2R0denoting the set of roles that objets of role r 2 R an referene through �eldf . A �eld f of role r an be null if and only if nullR 2 �eldf(r). The expliituse of nullR and the possibility to speify a set of alternative roles for every �eldallows roles to express both may and must referening relationships.19

www.manaraa.com

� Slots: Every role r has slotno(r) slots. A slot slotk(r) of role r 2 R is a subsetof R � F . Let o be an objet of role r and o0 an objet of role r0. A refereneho0; f; oi 2 H an �ll a slot k of objet o if and only if hr0; fi 2 slotk(r). Anobjet with role r must have eah of its slots �lled by exatly one referene.� Identities: Every role r 2 R has a set of identities(r) � F � F . Identitiesare pairs of �elds hf; gi suh that following referene f on objet o and thenreturning on referene g leads bak to o.� Ayliities: Every role r 2 R has a set ayli(r) � F of �elds along whihyles are forbidden.2.1.3 Role SemantisWe de�ne the semantis of roles as a onjuntion of invariants assoiated with rolede�nitions. A onrete role assignment is a map � : nodes(H) ! R0 suh that�(null) = nullR.De�nition 1 Given a set of role de�nitions, we say that heap H is role onsistent i�there exists a role assignment � : nodes(H)! R0 suh that for every o 2 nodes(H)the prediate loallyConsistent(o;H; �) is satis�ed. We all any suh role assignment� a valid role assignment.The prediate loallyConsistent(o;H; �) formalizes the onstraints assoiated withrole de�nitions.De�nition 2 loallyConsistent(o;H; �) i� all of the following onditions are met.Let r = �(o).1) For every �eld f 2 F and ho; f; o0i 2 H, �(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 Hg be the set of all aliasesof node o. Then k = slotno(r) and there exists some permutation p of the setf1; : : : ; kg suh that h�(oi); fii 2 slotpi(r) for all i.3) If ho; f; o0i 2 H, ho0; g; o00i 2 H, andhf; gi 2 identities(r), then o = o00.4) It is not the ase that graph H ontains a yleo1; f1; : : : ; os; fs; o1 where o1 = o andf1; : : : ; fs 2 ayli(r)Note that a role onsistent heap may have multiple valid role assignments �. However,in eah of these role assignments, every objet o is assigned exatly one role �(o).The existene of a role assignment � with the property �(o1) 6= �(o2) thus implieso1 6= o2. This is just one of the ways in whih roles make aliasing more preditable.20

www.manaraa.com

2.2 Using RolesRoles apture important properties of the objets and provide useful informationabout how the ations of the program a�et those properties.� Consisteny Properties: Roles an ensure that the program respets appli-ation - level data struture onsisteny properties. The roles in our proesssheduler, for example, ensure that a proess annot be simultaneously sleepingand running.� Interfae Changes: In many ases, the interfae of an objet hanges as itsreferening relationships hange. In our proess sheduler, for example, onlyrunning proesses an be suspended. Beause proedures delare the roles oftheir parameters, the role system an ensure that the program uses objetsorretly even as the objet's interfae hanges.� Multiple Uses: Code fatoring minimizes ode dupliation by produinggeneral-purpose lasses (suh as the Java Vetor and Hashtable lasses) thatan be used in a variety of ontexts. But this pratie obsures the di�erentpurposes that di�erent instanes of these lasses serve in the omputation. Be-ause eah instane's purpose is usually reeted in its relationships with otherobjets, roles an often reapture these distintions.� Correlated Relationships: In many ases, groups of objets ooperate toimplement a piee of funtionality. Standard type delarations provide someinformation about these ollaborations by identifying the points-to relationshipsbetween related objets at the granularity of lasses. But roles an apture amuh more preise notion of ooperation, beause they trak orrelated statehanges of related objets.Programmers an use roles for speifying the membership of objets in data stru-tures and the strutural invariants of data strutures. In both ases, the slot on-straints are essential.When used to desribe membership of an objet in a data struture, slots speifythe soure of the alias from a data struture node that stores the objet. By assigningdi�erent sets of roles to data strutures used at di�erent program points, it is possibleto distinguish nodes stored in di�erent data struture instanes. As an objet movesbetween data strutures, the role of the objet hanges appropriately to reet thenew soure of the alias.When desribing nodes of data strutures, slot onstraints speify the aliasingonstraints of nodes; this is enough to preisely desribe a variety of data struturesand approximate many others. Property 16 below shows how to identify trees in rolede�nitions even if tree nodes have additional aliases from other sets of nodes. It isalso possible to de�ne nodes whih make up a ompound data struture linked viadisjoint sets of �elds, suh as threaded trees, sparse matries and skip lists.21

www.manaraa.com

1 2 2 3

4

4

7

5 5

5 5

6

6

8 8 9

x x x

x x x

x x x

x x x

y

y

y y y

y y

y

y

y y y

Figure 2-1: Roles of Nodes of a Sparse MatrixExample 3 The following role de�nitions speify a sparse matrix of width and heightat least 3. These de�nitions an be easily onstruted from a sketh of a sparse matrixin Figure 2-1.role A1 {fields x : A2, y : A4;ayli x, y;}role A2 {fields x : A2 | A3, y : A5;slots A1.x | A2.x;ayli x, y;}role A3 {fields y : A6;slots A2.x;ayli x, y;}role A4 {fields x : A5, y : A4 | A7;slots A1.y | A4.y;ayli x, y;}role A5 {fields x : A5 | A6, y : A5 | A8;slots A4.x | A5.x, A2.y | A5.y;ayli x, y; 22

www.manaraa.com

SL
1 1

2
2

2 null

one one one one one one

two
two

two

Figure 2-2: Sketh of a Two-Level Skip List}role A6 {fields y : A6 | A9;slots A5.x, A3.y | A6.y;ayli x, y;}role A7 {fields x : A8;slots A4.y;ayli x, y;}role A8 {fields x : A8 | A9;slots A7.x | A8.x, A5.y;ayli x, y;}role A9 {slots A8.x, A6.y;ayli x, y;}4Example 4 We next give role de�nitions for a two-level skip list [69℄ skethed inFigure 2-2.role SkipList {fields one : OneNode | TwoNode | null;two : TwoNode | null;}role OneNode {fields one : OneNode | TwoNode | null;two : null;slots OneNode.one | TwoNode.one | SkipList.one;ayli one, two;} 23

www.manaraa.com

role TwoNode {fields one : OneNode | TwoNode | null;two : TwoNode | null;slots OneNode.one | TwoNode.one | SkipList.one,TwoNode.two | SkipList.two;ayli one, two;}42.3 Some Simple Properties of RolesIn this setion we identify some of the invariants expressible using sets of mutuallyreursive role de�nitions. Some further properties of roles are given in Appendix A.The following properties show some of the ways role spei�ations make objetaliasing more preditable. They are an immediate onsequene of the semantis ofroles.Property 5 (Role Disjointness)If there exists a valid role assignment � for H suh that �(o1) 6= �(o2), then o1 6= o2.The previous property gives a simple riterion for showing that objets o1 and o2 areunaliased: �nd a valid role assignment whih assigns di�erent roles to o1 and o2. Thisuse of roles generalizes the use of stati types for pointer analysis [24℄. Sine rolesreate a �ner partition of objets than a typial stati type system, their potentialfor proving absene of aliasing is even larger.Property 6 (Disjointness Propagation)If ho1; f; o2i; ho3; g; o4i 2 H, o1 6= o3, and there exists a valid role assignment � forH suh that �(o2) = �(o4) = r but �eldf(r) \ �eldg(r) = ;, then o2 6= o4.Property 7 (Generalized Uniqueness)If ho1; f; o2i; ho3; g; o4i 2 H, o1 6= o3, and there exists a role assignment � suh that�(o2) = �(o4) = r, but there are no indies i 6= j suh that h�(o1); fi 2 sloti(r) andh�(o2); gi 2 slotj(r) then o2 6= o4.A speial ase of Property 7 ours when slotno(r) = 1; this onstrains all referenesto objets of role r to be unique.Role de�nitions indue a role referene diagram RRD whih aptures some, butnot all, role onstraints.De�nition 8 (Role Referene Diagram)Given a set of de�nitions of roles R, a role referene diagram RRD is is a diretedgraph with nodes R0 and labelled edges de�ned byRRD = fhr; f; r0i j r0 2 �eldf (r) and 9i hr; fi 2 sloti(r0)g[fhr; f; nullRi j nullR 2 �eldf (r)g24

www.manaraa.com

Eah role referene diagram is a re�nement of the orresponding lass diagram in astatially typed language, beause it partitions lasses into multiple roles aordingto their referening relationships. The sets ��1 (r) of objets with role r hange duringprogram exeution, reeting the hanging referening relationships of objets.Role de�nitions give more information than a role referene diagram. Slot on-straints speify not only that objets of role r1 an referene objets of role r2 along�eld f , but also give ardinalities on the number of referenes from other objets.In addition, role de�nitions inlude identity and ayliity onstraints, whih are notpresent in role referene diagrams.Property 9 Let � be any valid role assignment. De�neG = fh�(o1); f; �(o2)i j ho1; f; o2i 2 HgThen G is a subgraph of RRD.It follows from Property 9 that roles give an approximation of may-reahability amongheap objets.Property 10 (May Reahability)If there is a valid role assignment � : nodes(H)! R0 suh that �(o1) 6= �(o2) whereo1; o2 2 nodes(H) and there is no path from �(o1) to �(o2) in the role referenediagram RRD, then there is no path from o1 to o2 in H.The next property shows the advantage of expliitly speifying null referenes inrole de�nitions. While the ability to speify ayliity is provided by the aylionstraint, it is also possible to indiretly speify must-yliity.Property 11 (Must Cyliity)Let F0 � F and RCYC � R be a set of nodes in the role referene diagram RRD suhthat for every node r 2 RCYC, if hr; f; r0i 2 RRD then r0 2 RCYC. If � is a valid roleassignment for H, then every objet o1 2 H with �(o1) 2 RCYC is a member of ayle in H with edges from F0.The following property shows that roles an speify a form of must-reahability amongthe sets of objets with the same role.Property 12 (Downstream Path Termination)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RFINAL � R0 of the role referene diagram RRD suh that for every node r 2 RINTER:1. F0 � ayli(r)2. if hr; f; r0i 2 RRD for f 2 F0, then r0 2 RINTER [RFINALLet � be a valid role assignment for H. Then every path in H starting from anobjet o1 with role �(o1) 2 RINTER and ontaining only edges labelled with F0 is apre�x of a path that terminates at some objet o2 with �(o2) 2 RFINAL.25

www.manaraa.com

Property 13 (Upstream Path Termination)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RINIT � R0 of the role referene diagram RRD suh that for every node r 2 RINTER:1. F0 � ayli(r)2. if hr0; f; ri 2 RRD for f 2 F0, then r0 2 RINTER [RINITLet � be a valid role assignment for H. Then every path in H terminating at anobjet o2 with �(o2) 2 RINTER and ontaining only edges labelled with F0 is a suÆx ofa path whih started at some objet o1, where �(o1) 2 RINIT.We next desribe the onditions that guarantee the existene at least one path in theheap, rather than stating the properties of all paths as in Properties 12 and 13.Property 14 (Downstream Must Reahability)Assume that for some set of �elds F0 � F there are sets of roles RINTER � R,RFINAL � R0 of the role referene diagram RRD suh that for every node r 2 RINTER:1. F0 � ayli(r)2. there exists f 2 F0 suh that �eldf(r) � RINTER [RFINALLet � be a valid role assignment for H. Then for every objet o1 with �(o1) 2 RINTERthere is a path in H with edges from F0 from o1 to some objet o2 where �(o2) 2 RFINAL.Property 15 (Upstream Must Reahability)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RINIT � R of the role referene diagram RRD suh that for every node r 2 RINTER:1. F0 � ayli(r)2. there exists k suh that slotk(r) � (RINTER [RINIT)� FLet � be a valid role assignment for H. Then for every objet o2 with �(o2) 2 RINTERthere is a path in H from some objet o1 with �(o1) 2 RINIT to the objet o2.Trees are a lass of data strutures espeially suited for stati analysis. Roles anexpress graphs that are not trees, but it is useful to identify trees as ertain sets ofmutually reursive role de�nitions.Property 16 (Treeness)Let RTREE � R be a set of roles and F0 � F set of �elds suh that for every r 2 RTREE1. F0 � ayli(r)2. jfi j sloti(r) \ (RTREE � F0) 6= ;gj � 1Let � be a valid role assignment for H andS � fhn1; f; n2i j hn1; f; n2i 2 H; �(n1); �(n2) 2 RTREE; f 2 F0gThen S is a set of trees. 26

www.manaraa.com

Chapter 3A Programming ModelIn this hapter we de�ne what it means for an exeution of a program to respet therole onstraints. This de�nition is ompliated by the need to allow the program totemporarily violate the role onstraints during data struture manipulations. Ourapproah is to let the program violate the onstraints for objets referened by loalvariables or parameters, but require all other objets to satisfy the onstraints.We �rst present a simple imperative language with dynami objet alloation andgive its operational semantis. We then speify additional statement preonditionsthat enfore the role onsisteny requirements.3.1 A Simple Imperative LanguageOur ore language ontains, as basi statements, Load (x=y.f), Store (x.f=y), Copy(x=y), and New (x=new). All variables are referenes to objets in the global heapand all assignments are referene assignments. We use an elementary test statementombined with nondeterministi hoie and iteration to express if and while state-ment, using the usual translation [44, 5℄ given in Figure 3-1. We represent the ontrolow of programs using ontrol-ow graphs.A program is a olletion of proedures pro 2 Pro. Proedures hange theglobal heap but do not return values. Every proedure pro has a list of parame-ters param(pro) = fparami(pro)gi and a list of loal variables loal(pro). We usevar(pro) to denote param(pro)[loal(pro). A proedure de�nition spei�es the ini-tial role preRk(pro) and the �nal role postRk(pro) for every parameter paramk(pro).We use proj for indies j 2 N to denote ativation reords of proedure pro. We fur-ther assume that there are no modi�ations of parameter variables so every parameterreferenes the same objet throughout the lifetime of proedure ativation.if t stat1 stat2 � (test(t); stat1)|(test(!t); stat2)while t stat � (test(t); stat)*; test(!t)Figure 3-1: Syntati Sugar for if and while27

www.manaraa.com

Example 17 The following kill proedure removes a proess from both the doublylinked list of running proesses and the list of all ative proesses. This is indiatedby the transition from RunningPro to DeadPro.proedure kill(p : RunningPro ->> DeadPro,l : LiveHeader)loal prev, urrent, p, nxt, lp, ln;{ // find 'p' in 'l'prev = l; urrent = l.next;p = urrent.pro;while (p != p) {prev = urrent;urrent = urrent.next;p = urrent.pro;}// remove 'urrent' and 'p' from ative listnxt = urrent.next;prev.next = nxt; urrent.urrent.pro = null;setRole(urrent : IsolatedCell);// remove 'p' from running listlp = p.prev; ln = p.next;p.prev = null; p.next = null;lp.next = ln; ln.prev = lp;setRole(p : DeadPro);}43.2 Operational SemantisIn this setion we give the operational semantis for our language. We fous on the�rst three olumns in Figures 3-2 and 3-3; the safety onditions in the fourth olumnare detailed in Setion 3.4.Figure 3-2 gives the small-step operational semantis for the basi statements.We use A ℄ B to denote the union A [B where the sets A and B are disjoint.The program state onsists of the stak s and the onrete heap H. The stak sis a sequene of pairs p�proi 2 �(Pro � N), where p 2 NCFG(pro) is a programpoint, and proi 2 Pro � N is an ativation reord of proedure pro. Programpoints p 2 NCFG(pro) are nodes of the ontrol-ow graphs. There is one ontrol-owgraph for every proedure pro. An edge of the ontrol-ow graph hp; p0i 2 ECFG(pro)indiates that ontrol may transfer from point p to point p0. We write p : stat tostate that program point p ontains a statement stat. The ontrol ow graph of eahproedure ontains speial program points entry and exit indiating proedure entry28

www.manaraa.com

Statement Transition Constraints Role Consistenyp : x=y.f hp�proi; s;H ℄ fhproi; x; oxigi!hp0�proi; s;H 0i x; y 2 loal(pro);hproi; y; oyi; hoy; f; ofi 2 H;hp; p0i 2 ECFG(pro);H 0 = H ℄ fproi; x; ofg aessible(of ; proi; H);on(H 0; o�stage(H 0))p : x.f=y hp�proi; s;H ℄ fhox; f; ofigi!hp0�proi; s;H 0i x; y 2 loal(pro);hproi; x; oxi; hproi; y; oyi 2 H;hp; p0i 2 ECFG(pro);H 0 = H ℄ fhox; f; oyig of 2 onstage(H; proi)on(H 0; o�stage(H 0))p : x=y hp�proi; s;H ℄ fhproi; x; oxigi!hp0�proi; s;H 0i x 2 loal(pro);y 2 var(pro);hproi; y; oyi 2 H;hp; p0i 2 ECFG(pro);H 0 = H ℄ fhproi; x; oyig on(H 0; o�stage(H 0))
p : x=new hp�proi; s;H ℄ fhproi; x; oxigi!hp0�proi; s;H 0i x 2 loal(pro);on fresh;hp; p0i 2 ECFG(pro);H 0 = H ℄ fhproi; x; onig ℄ nulls;nulls = fong � F � fnullg on(H 0; o�stage(H 0))p : test() hp�proi; s;Hi!hp0�proi; s;Hi satis�ed(; proi; H);hp; p0i 2 ECFG(pro) on(H; o�stage(H))satis�ed(x==y; proi; H) i� fo j hproi; x; oi 2 Hg = fo j hproi; y; oi 2 Hgsatis�ed(!(x==y); proi; H) i� not satis�ed(x==y; proi; H)aessible(o; proi; H) := (9p 2 param(pro) : hproi; p; oi 2 H)or not (9pro0j 9v 2 var(pro0) : hpro0j; v; oi 2 H)Figure 3-2: Semantis of Basi Statements

29

www.manaraa.com

Statement Transition Constraints Role Consistenyentry : hp�proi; s;Hi!hp0�proi; s;H ℄ nullsi nulls = fhproi; v; nulli jv 2 loal(pro);hp; p0i 2 ECFG(pro) on(H; o�stage(H))p : pro0(xk)k hp�proi; s;Hi!hentry�pro0j; p0�proi; s;H 0i j fresh in p�proi; s;hp; p0i 2 ECFG(pro);ok : hproi; xk; oki 2 H;H 0 = H ℄ fhpro0j; pk; okigk;8k pk = paramk(pro0) onW(ra; H; S);ra = fhok; preRk(pro0)igk;S = o�stage(H) [fokgkexit : hp�proi; s;Hi!hs;H n AFi AF = fhproi; v; ni jhproi; v; ni 2 Hg onW(ra; H; S);ra = fhparndk(proi); postRk(pro)igk;S = o�stage(H) [fo j hproi; v; oi 2 Hgparndk(proi) = o where hproi; paramk(pro); oi 2 HFigure 3-3: Semantis of Proedure Calland exit, with no statements assoiated with them. We assume that eah onditionof a test statement is of the form x==y or !(x==y) where x and y are either variablesor a speial onstant null whih always points to the null objet.The onrete heap is either an error heap error or a non-error heap. A non-errorheap H � N � F � N [((Pro � N) � V � N) is a direted graph with labellededges, where nodes represent objets and proedure ativation reords, whereas edgesrepresent heap referenes and loal variables. An edge ho1; f; o2i 2 N�F�N denotesa referene from objet o1 to objet o2 via �eld f 2 F . An edge hproi; x; oi 2 Hmeans that loal variable x in ativation reord proi points to objet o.A load statement x=y.f makes the variable x point to node of , whih is referenedby the f �eld of objet oy, whih is in turn referened by variable y. A store statementx.f=y replaes the referene along �eld f in objet ox by a referene to objet oy thatis referened by y. The opy statement x=y opies a referene to objet oy into variablex. The statement x=new reates a new objet on with all �elds initially refereningnull, and makes x point to on. The statement test() allows exeution to proeedonly if ondition is satis�ed.Figure 3-3 shows the semantis of proedure alls. Proedure all pushes newativation reord onto stak, inserts it into the heap, and initializes the parameters.Proedure entry initializes loal variables. Proedure exit removes the ativationreord from the heap and the stak.
3.3 Onstage and O�stage ObjetsAt every program point the set nodes(H) of all objets of heap H an be partitionedinto: 30

www.manaraa.com

1. onstage objets (onstage(H)) referened by a loal variable or parameter ofsome ativation frameonstage(H; proi):=fo j 9x 2 var(pro)hproi; x; oi 2 Hgonstage(H):= Sproi onstage(H; proi)2. o�stage objets (o�stage(H)) unreferened by loal or parameter variableso�stage(H) := nodes(H) n onstage(H)Onstage objets need not have orret roles. O�stage objets must have orret rolesassuming some role assignment for onstage objets.De�nition 18 Given a set of role de�nitions and a set of objets S � nodes(S), wesay that heap H is role onsistent for S, and we write on(H; S), i� there existsa role assignment � : nodes(H) ! R0 suh that the loallyConsistent(o;H; �; S)prediate is satis�ed for every objet o 2 S.We de�ne loallyConsistent(o;H; �; S) to generalize the loallyConsistent(o;H; �)prediate, weakening the ayliity ondition.De�nition 19 loallyConsistent(o;H; �; S) holds i� onditions 1), 2), and 3) ofDe�nition 2 are satis�ed and the following ondition holds:4') It is not the ase that graph H ontains a yle o1; f1; : : : ; os; fs; o1 suh thato1 = o, f1; : : : ; fs 2 ayli(r), and additionally o1; : : : ; os 2 S.Here S is the set of onstage objets that are not allowed to reate a yle whereasobjets in nodes(H) n S are exempt from the ayliity ondition. The prediatesloallyConsistent(o;H; �; S) and on(H; S) are monotoni in S, so a larger Simplies a stronger invariant. For S = nodes(H), onsisteny for S is equivalentwith heap onsisteny from De�nition 1. Note that the role assignment � spei�esroles even for objets o 2 nodes(H) n S. This is beause the role of o may inuenethe role onsisteny of objets in S whih are adjaent to o.At proedure alls, the role delarations for parameters restrit the set of poten-tial role assignments. We therefore generalize on(H; S) to onW(ra; H; S), whihrestrits the set of role assignments � onsidered for heap onsisteny.De�nition 20 Given a set of role de�nitions, a heap H, a set S � nodes(H),and a partial role assignment ra � S ! R, we say that the heap H is onsistentwith ra for S, and write onW(ra; H; S), i� there exists a (total) role assignment� : nodes(H) ! R0 suh that ra � � and for every objet o 2 S the prediateloallyConsistent(o;H; �; S) is satis�ed. 31

www.manaraa.com

3.4 Role ConsistenyWe are now able to preisely state the role onsisteny requirements that must besatis�ed for program exeution. The role onsisteny requirements are in the fourthrow of Figures 3-2 and 3-3. We assume the operational semantis is extended withtransitions leading to a program state with heap error whenever role onsisteny isviolated.3.4.1 O�stage ConsistenyAt every program point, we require on(H; o�stage(H)) to be satis�ed. This meansthat o�stage objets have orret roles, but onstage objets may have their role tem-porarily violated.3.4.2 Referene Removal ConsistenyThe Store statement x.f=y has the following safety preondition. When a referenehox; f; ofi 2 H for hproj; x; oxi 2 H, and hox; f; ofi 2 H is removed from the heap,both ox and of must be referened from the urrent proedure ativation reord. Itis suÆient to verify this ondition for of , as ox is already onstage by de�nition. Thereferene removal onsisteny ondition enables the ompletion of the role hangefor of after the referene hox; f; ofi is removed and ensures that heap referenes areintrodued and removed only between onstage objets.3.4.3 Proedure Call ConsistenyOur programming model ensures role onsisteny aross proedure alls using thefollowing protool.A proedure all pro0(x1; :::; xp) in Figure 3-3 requires the role onsisteny pre-ondition onW(ra; H; S), where the partial role assignment ra requires objets ok,orresponding to parameters xk, to have roles preRk(pro0) expeted by the allee, andS = o�stage(H) [fokgk for hproj; xk; oki 2 H.To ensure that the allee pro0j never observes inorret roles, we impose an aessi-bility ondition for the allee's Load statements (see the fourth olumn of Figure 3-2).The aessibility ondition prohibits aess to any objet o referened by some loalvariable of a stak frame other than pro0j, unless o is referened by some parameterof pro0j. Provided that this ondition is not violated, the allee pro0j only aessesobjets with orret roles, even though objets that it does not aess may have in-orret roles. In Chapter 5 we show how the role analysis statially ensures that theaessibility ondition is never violated.At the proedure exit point (Figure 3-3), we require orret roles for all objetsreferened by the urrent ativation frame pro0j. This implies that heap operationsperformed by pro0j preserve heap onsisteny for all objets aessed by pro0j.32

www.manaraa.com

Statement Transition Constraints Role Consistenyp : roleChek(x1; : : : ; xn; ra) hp�proi; s;Hi!hp0�proi; s;Hi hp; p0i 2 ECFG onW(ra; H; S);S = o�stage(H) [fo j hproi; xk; oi 2 HgFigure 3-4: Operational Semantis of Expliit Role Chek3.4.4 Expliit Role ChekThe programmer an speify a stronger invariant at any program point using state-ment roleChek(x1; : : : ; xp; ra). As Figure 3-4 indiates, roleChek requires theonW(ra; H; S) prediate to be satis�ed for the supplied partial role assignmentra where S = o�stage(H) [fokgk for objets ok referened by given loal variablesxk.3.5 Instrumented SemantisWe expet the programmer to have a spei� role assignment in mind when writingthe program, with this role assignment hanging as the statements of the programhange the referening relationships. So when the programmer wishes to hange therole of an objet, he or she writes a program that brings the objet onstage, hangesits referening relationships so that it plays a new role, then puts it o�stage in itsnew role. The roles of other objets do not hange.1To support these programmer expetations, we introdue an augmented program-ming model in whih the role assignment � is oneptually part of the program'sstate. The role assignment hanges only if the programmer hanges it expliitly us-ing the setRole statement. The augmented programming model has an underlyinginstrumented semantis as opposed to the original semantis.Example 21 The original semantis allows asserting di�erent roles at di�erent pro-gram points even if the struture of the heap was not hanged, as in the followingproedure foo.role A1 { fields f : B1; }role B1 { slots A1.f; }role A2 { fields f : B2; }role B2 { slots A2.f; }proedure foo()var x, y;{ x = new; y = new;x.f = y;1An extension to the programming model supports asading role hanges in whih a single rolehange propagates through the heap hanging the roles of o�stage objets, see Setion 6.4.33

www.manaraa.com

Statement Transition Constraints Role Consisteny
p : x=new hp�proi; s;H ℄ fhproi; x; oxig; �i!hp0�proi; s;H 0; �0i x 2 loal(pro);on fresh;hp; p0i 2 ECFG(pro);H 0 = H℄fhproi; x; onig℄fong � F � fnullg;�0 = �[on 7! unknown℄ onW(�0; H 0; o�stage(H 0))

p :setRole(x:r) hp�proi; s;H; �i!hp0�proi; s;H; �0i x 2 loal(proi);hproi; x; oxi 2 H;�0 = �[ox 7! r℄;hp; p0i 2 ECFG onW(�0; H; o�stage(H))p : stat hs;H; �i!hs0; H 0; �i hs;Hi!hs0; H 0i P ^ onW(� [ra; H 00 ; S)for every original onditionP ^ onW(ra; H 00 ; S)Figure 3-5: Instrumented SemantisroleChek(x,y, x:A1,y:B1);roleChek(x,y, x:A2,y:B2);}Both role heks would sueed sine eah of the spei�ed partial role assignments anbe extended to a valid role assignment. On the other hand, the role hek statementroleChek(x,y, x:A1,y:B2) would fail.The proedure foo in the instrumented semantis an be written as follows.proedure foo()var x, y;{ x = new; y = new;x.f = y;setRole(x:A1); setRole(y:B1);roleChek(x,y, x:A1,y:B1);setRole(x:A2); setRole(y:B2);roleChek(x,y, x:A2,y:B2);}The setRole statement makes the role hange of objet expliit. 4The instrumented semantis extends the onrete heap H with a role assign-ment �. Figure 3-5 outlines the hanges in instrumented semantis with respet tothe original semantis. We introdue a new statement setRole(x:r), whih mod-i�es a role assignment �, giving �[ox 7! r℄, where ox is the objet referened byx. All statements other than setRole preserve the urrent role assignment. Forevery onsisteny ondition onW(ra; H; S) in the original semantis, the instru-mented semantis uses the orresponding ondition onW(� [ra; H; S) and failsif � is not an extension of ra. Here we onsider on(H; S) to be a shorthandfor onW(;; H; S). For example, the new role onsisteny ondition for the Copystatement x=y is onW(�; H; o�stage(H)). The New statement assigns an identi�er34

www.manaraa.com

unknown to the newly reated objet on. By de�nition, a node with unknown doesnot satisfy the loallyConsistent prediate. This means that setRole must be used toset a a valid role of on before on moves o�stage.By introduing an instrumented semantis we are not suggesting an implemen-tation that expliitly stores roles of objets at run-time. We instead use the instru-mented semantis as the basis of our role analysis and ensure that all role heks anbe statially removed. Beause the instrumented semantis is more restritive thanthe original semantis, our role analysis is a onservative approximation of both theinstrumented semantis and the original semantis.

35

www.manaraa.com

36

www.manaraa.com

Chapter 4Intraproedural Role AnalysisThis hapter presents an intraproedural role analysis algorithm. The goal of therole analysis is to statially verify the role onsisteny requirements desribed in theprevious hapter.The key observation behind our analysis algorithm is that we an inrementallyverify role onsisteny of the entire onrete heap H by ensuring role onsisteny forevery node when it goes o�stage. This allows us to represent the statially unboundedo�stage portion of the heap using summary nodes with \may" referenes. In ontrast,we use a \must" interpretation for referenes from and to onstage nodes. The exatrepresentation of onstage nodes allows the analysis to verify role onsisteny in thepresene of temporary violations of role onstraints.Our analysis representation is a graph in whih nodes represent objets and edgesrepresent referenes between objets. There are two kinds of nodes: onstage nodesrepresent onstage objets, with eah onstage node representing one onstage objet;and o�stage nodes, with eah o�stage node orresponding to a set of objets thatplay that role. To inrease the preision of the analysis, the algorithm oasionallygenerates multiple o�stage nodes that represent disjoint sets of objets playing thesame role. Distint o�stage objets with the same role r represent disjoint sets ofobjets of role r with di�erent reahability properties from onstage nodes.We frame role analysis as a data-ow analysis operating on a distributive lattieP(RoleGraphs) of sets of role graphs with set union [as the join operator. Thishapter fouses on the intraproedural analysis. We use pro to denote the topmostativation reord in a onrete heap H. In Chapter 5 we generalize the algorithm tothe ompositional interproedural analysis.4.1 Abstration RelationEvery data-ow fat G � RoleGraphs is a set of role graphs G 2 G. Every role graphG 2 RoleGraphs is either a bottom role graph ?G representing the set of all onreteheaps (inluding error), or a tuple G = hH; �;Ki representing non-error onreteheaps, where� H � N�F�N is the abstrat heap with nodes N representing objets and �elds37

www.manaraa.com

F . The abstrat heap H represents heap referenes hn1; f; n2i and variablesof the urrently analyzed proedure hpro; x; ni where x 2 loal(pro). Nullreferenes are represented as referenes to abstrat node null. We de�ne abstratonstage nodes onstage(H) = fn j hpro; x; ni 2 H; x 2 loal(pro)[param(pro)gand abstrat o�stage nodes o�stage(H) = nodes(H) n onstage(H) n fpro; nullg.� � : nodes(H)! R0 is an abstrat role assignment, �(null) = nullR;� K : nodes(H) ! fi; sg indiates the kind of eah node; when K(n) = i, thenn is an individual node representing at most one objet, and when K(n) = s,n is a summary node representing zero or more objets. We require K(pro) =K(null) = i, and require all onstage nodes to be individual, K[onstage(H)℄ =fig.The abstration relation � relates a pair hH; �i of onrete heap and onrete roleassignment with an abstrat role graph G.De�nition 22 We say that an abstrat role graph G represents onrete heap H withrole assignment �, and write hH; �i�G, i� G = ?G or: H 6= error, G = hH; �;Ki,and there exists a funtion h : nodes(H)! nodes(H) suh that1) H is role onsistent: onW(�; H; o�stage(H)),2) identity relations of onstage nodes with o�stage nodes hold: if ho1; f; o2i 2 Hand ho2; g; o3i 2 H for o1 2 onstage(H), o2 2 o�stage(H), andhf; gi 2 identities(�(o1)), then o3 = o1;3) h is a graph homomorphism: if ho1; f; o2i 2 H then hh(o1); f; h(o2)i 2 H;4) an individual node represents at most one onrete objet: K(n) = i impliesjh�1(n)j � 1;5) h is bijetion on edges whih originate or terminate at onstage nodes:if hn1; f; n2i 2 H and n1 2 onstage(H) or n2 2 onstage(H), then there existsexatly one ho1; f; o2i 2 H suh that h(o1) = n1 and h(o2) = n2;6) h(null) = null and h(pro) = pro;7) the abstrat role assignment � orresponds to the onrete role assignment:�(o) = �(h(o)) for every objet o 2 nodes(H).Note that the error heap error an be represented only by the bottom role graph ?G.The analysis uses ?G to indiate a potential role error.Condition 3) implies that role graph edges are a onservative approximation ofonrete heap referenes. These edges are in general \may" edges. Hene it is possiblefor an o�stage node n that hn; f; n1i, hn; f; n2i 2 H for n1 6= n2. This annot happenwhen n 2 onstage(H) beause of 5). Another onsequene of 5) is that an edge in Hfrom an onstage node n0 to a summary node ns implies that ns represents at leastone objet. Condition 2) strengthens 1) by requiring ertain identity onstraints foronstage nodes to hold, as explained in Setion 4.2.4.Example 23 Consider the following role delaration for an ayli list.38

www.manaraa.com

LN

L

LN

LN

LN

proc

prev
current

next
next

next

next

next

next

next

h

LN

LN

proc

prev

current

next

next

next

next

next

next

next

null

L

LN

LN

h

h

h

h

h

h

LN

LN

nullFigure 4-1: Abstration Relation

39

www.manaraa.com

role L { // List headerfields first : LN | null;}role LN { // List nodefields next : LN | null;slots LN.next | L.first;ayli next;}Figure 4-1 shows a role graph and one of the onrete heaps represented by therole graph via homomorphism h. There are two loal variables, prev and urrent,referening distint onstage objets. Onstage objets are isomorphi to onstage nodesin the role graph. In ontrast, there are two objets mapped to eah of the summarynodes with role LN (shown as LN-labelled retangles in Figure 4-1). Note that thesets of objets mapped to these two summary nodes are disjoint. The �rst summaryLN-node represents objets stored in the list before the objet referened by prev.The seond summary LN-node represents objets stored in the list after the objetreferened by urrent. 44.2 Transfer FuntionsThe key ompliation in developing the transfer funtions for the role analysis isto aurately model the movement of objets onstage and o�stage. For example, aload statement x=y.f may ause the objet referred to by y.f to move onstage. Inaddition, if x was the only referene to an onstage objet o before the statementexeuted, objet o moves o�stage after the exeution of the load statement, and thusmust satisfy the loallyConsistent prediate.The analysis uses an expansion relation � to model the movement of objetsonstage and a ontration relation � to model the movement of objets o�stage. Theexpansion relation uses the invariant that o�stage nodes have orret roles to generatepossible aliasing relationships for the node being pulled onstage. The ontrationrelation establishes the role invariants for the node going o�stage, allowing the nodeto be merged into the other o�stage nodes and represented more ompatly.We present our role analysis as an abstrat exeution relation st;. The abstratexeution ensures that the abstration relation � is a forward simulation relation [63℄from the spae of onrete heaps with role assignments to the set RoleGraphs. Thesimulation relation implies that the traes of; inlude the traes of the instrumentedsemantis!. To ensure that the program does not violate onstraints assoiated withroles, it is thus suÆient to guarantee that ?G is not reahable via ;.To prove that ?G is not reahable in the abstrat exeution, the analysis omputesfor every program point p a set of role graphs G that onservatively approximates thepossible program states at point p. The transfer funtion for a statement st is animage [[st℄℄(G) = fG0 j G 2 G; G st;G0g. The analysis omputes the relation st; inthree steps: 40

www.manaraa.com

hH; �i - hH 0; �0i���	� �? ���R�G1 � G2 st=) G3 � G4Figure 4-2: Simulation Relation Between Abstrat and Conrete ExeutionTransition De�nition ConditionshH; �;Ki x=y.f; G0 hH; �;Ki ny;f� G1 x=y.f=) G2 nx�G0 hpro; x; nxi; hpro; y; nyi 2 HhH; �;Ki x=y; G0 hH; �;Ki x=y=)G1 n1�G0 hpro; x; n1i 2 HhH; �;Ki x=new; G0 hH; �;Ki x=new=) G1 n1�G0 hpro; x; n1i 2 HhH; �;Ki st;G0 hH; �;Ki st=)G0 st 2 fx.f=y;test();setRole(x:r);roleChek(x1::p; ra)gFigure 4-3: Abstrat Exeution ;1. ensure that the relevant nodes are instantiated using expansion relation � (Se-tion 4.2.1);2. perform symboli exeution st=) of the statement st (Setion 4.2.3);3. merge nodes if needed using ontration relation � to keep the role graphbounded (Setion 4.2.2).Figure 4-2 shows how the abstration relation � relates �, st=), and � with the on-rete exeution ! in instrumented semantis. Assume that a onrete heap hH; �iis represented by the role graph G1. Then one of the role graphs G2 obtained afterexpansion remains an abstration of hH; �i. The symboli exeution st=) followedby the ontration relation � orresponds to the instrumented operational semantis!. Figure 4-3 shows rules for the abstrat exeution relation st;. Only Load statementuses the expansion relation, beause the other statements operate on objets thatare already onstage. Load, Copy, and New statements may remove a loal variablereferene from an objet, so they use ontration relation to move the objet o�stageif needed. For the rest of the statements, the abstrat exeution redues to symboliexeution =) desribed in Setion 4.2.3.41

www.manaraa.com

Transition De�nition ConditionhH; �;Ki n;f�hH; �;Ki hn; f; n0i 2 H; n0 2 onstage(H)hH; �;Ki n;f� G0 hH; �;Ki n0*n0hH1; �1; K1i n0k G0 hn; f; n0i 2 H; n0 2 o�stage(H)hn; f; n0i 2 H1Figure 4-4: Expansion RelationNondeterminism and FailureThe st; relation is not a funtion beause the expansion relation � an generate aset of role graphs from a single role graph. Also, there might be no st; transitionsoriginating from a given state G if the symboli exeution =) produes no results.This orresponds to a trae whih annot be extended further due to a test statementwhih fails in state G. This is in ontrast to a transition fromG to ?G whih indiatesa potential role onsisteny violation or a null pointer dereferene. We assume that=) and � relations ontain the transition h?G;?Gi to propagate the error role graph.In most ases we do not show the expliit transitions to error states.4.2.1 ExpansionFigure 4-4 shows the expansion relation n;f� . Given a role graph hH; �;Ki, expansionattempts to produe a set of role graphs hH 0; �0; K 0i in eah of whih hn; f; n0i 2 H 0and K(n0) = i. Expansion is used in abstrat exeution of the Load statement. It�rst heks for null pointer dereferene and reports an error if the hek fails. Ifhn; f; n0i 2 H and K(n0) = i already hold, the expansion returns the original state.Otherwise, hn; f; n0i 2 H with K(n0) = s. In that ase, the summary node n0 is �rstinstantiated using instantiation relation n0*n0 . Next, the split relation n0k is applied. Let�(n0) = r. The split relation ensures that n0 is not a member of any yle of o�stagenodes whih ontains only edges in ayli(r). We explain instantiation and split inmore detail below.InstantiationFigure 4-5 presents the instantiation relation. Given a role graph G = hH; �;Ki,instantiation n0*n0 generates the set of role graphs hH 0; �0; K 0i suh that eah onreteheap represented by hH; �;Ki is represented by one of the graphs hH 0; �0; K 0i. Eahof the new role graphs ontains a fresh individual node n0 that satis�es loalChek.The edges of n0 are a subset of edges from and to n0.Let H0 be a subset of the referenes between n0 and onstage nodes, and let H1 bea subset of the referenes between n0 and o�stage nodes. Referenes in H0 are movedfrom n0 to the new node n0, beause they represent at most one referene, while42

www.manaraa.com

hH; �;Ki n0*n0hH 0; �0; K 0i H 0 = H nH0 [H 00 [H 01�0 = �[n0 7! �(n0)℄K 0 = K[n0 7! i℄loalChek(n0; hH 0; �0; K 0i)H0 � H \ (onstage(H)� F � fn0g [fn0g � F � onstage(H))H1 � H \ (o�stage(H)� F � fn0g [fn0g � F � o�stage(H))H 00 = swing(n0; n0; H0)H 01 � swing(n0; n0; H1)swing(nold; nnew; H) = fhnnew; f; ni j hnold; f; ni 2 Hg [fhn; f; nnewi j hn; f; noldi 2 Hg [fhnnew; f; nnewi j hnold; f; noldi 2 HgFigure 4-5: Instantiation Relationreferenes in H1 are opied to n0 beause they may represent multiple onrete heapreferenes. Moving a referene is formalized via the swing operation in Figure 4-5.The instantiation of a single graph an generate multiple role graphs depending onthe hoie of H 00 and H 01. The number of graphs generated is limited by the existingreferenes of node n0 and by the loalChek requirement for n0. This is where our roleanalysis takes advantage of the onstraints assoiated with role de�nitions to reduethe number of aliasing possibilities that need to be onsidered.SplitThe split relation is important for verifying operations on data strutures suh as skiplists and sparse matries. It is also useful for improving the preision of the initial setof role graphs on proedure entry (Setion 5.2.1).The goal of the split relation is to exploit the ayliity onstraints assoiated withrole de�nitions. After a node n0 is brought onstage, split represents the ayliityondition of �(n0) expliitly by eliminating impossible paths in the role graph. Ituses additional o�stage nodes to enode the reahability information implied by theayliity onditions. This information an then be used even after the role of noden0 hanges. In partiular, it allows the ayliity ondition of n0 to be veri�ed whenn0 moves o�stage.Example 24 Consider a role graph for an ayli list with nodes LN and a headernode L. The instantiated node n0 is in the middle of the list. Figure 4-6 a) shows arole graph with a single summary node representing all o�stage LN-nodes. Figure 4-6b) shows the role graph after applying the split relation. The resulting role graphontains two LN summary nodes. The �rst LN summary node represents objetsde�nitely reahable from n0 along next edges; the seond summary NL node representsobjets de�nitely not reahable from n0. 4Figure 4-7 shows the de�nition of the split operation on node n0, denoted by n0k .Let G = hH; �;Ki be the initial role graph and �(n0) = r. If ayli(r) = ;, then the43

www.manaraa.com

LNLN

L

null

n
0

a) Before Split
null

LNLN

L

LN

n
0

b) After Split
Figure 4-6: A Role Graph for an Ayli List

44

www.manaraa.com

hH; �;Ki n0khH; �;Ki; ayChek(n0; hH; �;Ki; o�stage(H))hH; �;Ki n0khH 0; �0; K 0i; :ayChek(n0; hH; �;Ki; o�stage(H))where H 0 = (H nHy) [Ho� [BfNR [BfR [BtNR [BtR [Nf [NtHy = fhn1; f; n2i j n1 or n2 2 SygHo� = f hn01; f; n02i j n1 = (n01); n2 = (n02);n1; n2 2 o�stage1(H); n1 or n2 2 Sy;hn1; f; n2i 2 H gn(SR � ayli(r)� SNR)H \ (onstage(H)� F [fn0g � ayli(r))� Sy = AfNR ℄ AfRH \ Sy � (ayli(r)� fn0g [F � onstage(H)) = AtNR ℄ AtRBfNR = fhn1; f; hNR(n2)i j hn1; f; n2i 2 AfNRgBfR = fhn1; f; hR(n2)i j hn1; f; n2i 2 AfRgBtNR = fhhNR(n1); f; n2i j hn1; f; n2i 2 AtNRgBtR = fhhR(n1); f; n2i j hn1; f; n2i 2 AtRgNf = fhn0; f; n0i j n0 2 SR; hn0; f; (n0)i 2 H; f 2 ayli(r)gNt = fhn0; f; n0i j n0 2 SNR; h(n0); f; n0i 2 H; f 2 ayli(r)gSy = fn j 9n1; : : : ; np�1 2 o�stage(H) :hn0; f0; n1i; : : : ; hnk; fk; ni; hn; fk+1; nk+2i; hnp�1; fp�1; n0i 2 H;f0; : : : ; fp�1 2 ayli(r)go�stage1(H) = o�stage(H) n fn0gr = �(n0)�0((n)) = �(n)K 0((n)) = K(n)Figure 4-7: Split Relation
45

www.manaraa.com

split operation returns the original graph G; otherwise it proeeds as follows. Call apath in graph H yle-induing if all of its nodes are o�stage and all of its edges arein ayli(r). Let Sy be the set of nodes n suh that there is a yle-induing pathfrom n0 to n and a yle-induing path from n to n0.The goal of the split operation is to split the set Sy into a fresh set of nodes SNRrepresenting objets de�nitely not reahable from n0 along edges in ayli(r) and afresh set of nodes SR representing objets de�nitely reahable from n0. Eah of thenewly generated graphs H 0 has the following properties:1) merging the orresponding nodes from SNR and SR in H 0 yields the originalgraph H;2) n0 is not a member of any yle in H 0 onsisting of o�stage nodes and edges inayli(r);3) onstage nodes in H 0 have the same number of �elds and aliases as in H.Let S0 = nodes(H) n Sy and let hNR : Sy ! SNR and hR : Sy ! SR be bijetions.De�ne a funtion : nodes(H 0)! nodes(H) as follows:(n) = 8><>: n; n 2 S0h�1R (n); n 2 SRh�1NR(n); n 2 SNRThen H 0 � fhn01; f; n02i j h(n01); f; (n02)i 2 Hg.Beause there are two opies of S0 in H 0, there might be multiple edges hn01; f; n02iin H 0 orresponding to an edge h(n1); f; (n2)i 2 H.If both n01 and n02 are o�stage nodes other than n0, we always inlude hn01; f; n02iin H 0 unless hn01; f; n02i 2 SR � ayli(r) � SNR. The last restrition prevents ylesin H 0.For an edge hn1; f; n2i 2 H where n1 2 onstage(H) and n2 2 Sy we inlude inH 0 either the edge hn1; f; hNR(n2)i or hn1; f; hR(n2)i but not both. Split generatesmultiple graphs H 0 to over both ases. We proeed analogously if n2 2 onstage(H)and n1 2 Sy. The node n0 itself is treated in the same way as onstage nodes forf =2 ayli(r). If f 2 ayli(r) then we hoose referenes to n0 to have a soure inSNR, whereas the referene from n0 have the target in SR.Details of the split onstrution are given in Figure 4-7. The intuitive meaning ofthe sets of edges is the following:Ho� : edges between o�stage nodesBfNR : edges from onstage nodes to SNRBfR : edges from onstage nodes to SRBtNR : edges from SNR to onstage nodesBtR : edges from SR to onstage nodesNf : ayli(r)-edges from n0 to SRNt : ayli(r)-edges from SNR to n0The sets BfNR and BfR are reated as images of the sets AfNR and AfR whih partitionedges from onstage nodes to nodes in Sy. Similarly, the sets BtNR and BtR are46

www.manaraa.com

hH; �;Ki n�hH; �;Ki 9x 2 var(pro) :hpro; x; ni 2 HhH; �;Ki n� normalize(hH; �;Ki) nodeChek(n; hH; �;Ki; o�stage(H))Figure 4-8: Contration Relationnormalize(hH; �;Ki) = hH 0; �0; K 0iwhere H 0 = fhn1=�; f; n2=�i j hn1; f; n2i 2 Hg�0(n=�) = �(n)K 0(n=�) = (i; n=� = fng; K(n) = is; otherwisen1 � n2 i� n1 = n2 or(n1; n2 2 o�stage(H); �(n1) = �(n2);8n0 2 onstage(H) : (reah(n0; n1) i� reah(n0; n2))reah(n0; n) i� 9n1; : : : ; np�1 2 o�stage(n); 9f1; : : : ; fp 2 ayli(�(n0)) :hn0; f1; n1i; : : : ; hnp�1; fp; ni 2 HFigure 4-9: Normalizationreated as images of the sets AtNR and AtR whih partition edges from nodes in Syto onstage nodes.We note that if in the split operation Sy = ; then split has no e�et and neednot be performed. In Figure 4-6, after performing a single split, there is no need tosplit for subsequent elements of the list. Examples like this indiate that split willnot be invoked frequently during the analysis.4.2.2 ContrationFigure 4-8 shows the non-error transitions of the ontration relation n�. The analysisuses ontration when a referene to node n is removed. If there are other referenesto n, the result is the original graph. Otherwise n has just gone o�stage, so theanalysis invokes nodeChek. If the hek fails, the result is ?G. If the role heksueeds, the ontration invokes normalization operation to ensure that the rolegraph remains bounded. For simpliity, we use normalization whenever nodeCheksueeds, although it is suÆient to perform normalization only at program pointsadjaent to bak edges of the ontrol-ow graph.NormalizationFigure 4-9 shows the normalization relation. Normalization aepts a role graphhH; �;Ki and produes a normalized role graph hH 0; �0; K 0i whih is a fator graph47

www.manaraa.com

Statement s Transition Conditionsx = y.f hH ℄ fpro; x; nxg; �;Ki st=)hH ℄ fpro; x; nfg; �;Ki hpro; y; nyi; hny; f; nf i 2 Hx.f = y hH ℄ fnx; f; nfg; �;Ki st=)hH ℄ fnx; f; nyg; �;Ki hpro; x; nxi; hpro; y; nyi 2 Hnf 2 onstage(H)x = y hH ℄ fpro; x; nxg; �;Ki st=)hH ℄ fpro; x; nyg; �;Ki hpro; y; nyi 2 Hx = new hH ℄ fpro; x; nxg; �;Ki st=)hH ℄ fpro; x; nng; �0; Ki nn fresh�0 = �[nn 7! unknown℄test() hH; �;Ki st=)hH; �;Ki satis�ed(; H)setRole(x:r) hH; �;Ki st=)hH; �[nx 7! r℄; Ki hpro; x; nxi 2 HroleChOk(nx; r; hH; �;Ki)roleChek(x1::p; ra) hH; �;Ki st=)hH; �;Ki 8i hpro; xi; nii 2 HnodeChek(ni; hH; �;Ki; S)S = o�stage(H) [fnigi�(ni) = ra(ni)satis�ed(x==y; H) i� fo j hpro; x; oi 2 Hg = fo j hpro; y; oi 2 Hgsatis�ed(!(x==y); H) i� not satis�ed(x==y; H)Figure 4-10: Symboli Exeution of Basi Statementsof hH; �;Ki under the equivalene relation �. Two o�stage nodes are equivalentunder � if they have the same role and the same reahability from onstage nodes.Here we onsider node n to be reahable from an onstage node n0 i� there is somepath from n0 to n whose edges belong to ayli(�(n0)) and whose nodes are all ino�stage(H). Note that, by onstrution, normalization avoids merging nodes whihwere previously generated in the split operation k, while still ensuring a bound onthe size of the role graph. For a proedure with l loal variables, f �elds and r rolesthe number of nodes in a role graph is on the order of r2l so the maximum size ofa hain in the lattie is of the order of 2r2l. To ensure termination we onsider rolegraphs equal up to isomorphism. Isomorphism heking an be done eÆiently ifnormalization assigns anonial names to the equivalene lasses it reates.4.2.3 Symboli ExeutionFigure 4-10 shows the symboli exeution relation st=). In most ases, the symboliexeution of a statement ats on the abstrat heap in the same way that the statementwould at on the onrete heap. In partiular, the Store statement always performsstrong updates. The simpliity of symboli exeution is due to onditions 3) and 5)in the abstration relation �. These onditions are ensured by the � relation whihinstantiates nodes, allowing strong updates. The symboli exeution also veri�es theonsisteny onditions that are not veri�ed by � or �.Verifying Referene Removal ConsistenyThe abstrat exeution st; for the Store statement an easily verify the Store safetyondition from setion 3.4.2, beause the set of onstage and o�stage nodes is knownpreisely for every role graph. It returns ?G if the safety ondition fails.48

www.manaraa.com

Symboli Exeution of setRoleThe setRole(x:r) statement sets the role of node nx referened by variable x tor. Let G = hH; �;Ki be the urrent role graph and let hpro; x; nxi 2 H. If nxhas no adjaent o�stage nodes, the role hange always sueeds. In general, thereare restritions on when the hange an be done. Let hH; �i be a onrete heapwith role assignment represented by G and h be a homomorphism from H to H.Let h(ox) = nx. Let r0 = �(ox). The symboli exeution must make sure that theondition onW(�; H; o�stage(H)) ontinues to hold after the role hange. Beausethe set of onstage nodes does not hange, it suÆes to ensure that the original roles foro�stage nodes are onsistent with the new role r. The ayliity onstraint involvesonly o�stage nodes, so it remains satis�ed. The other role onstraints are loal, sothey an only be violated for o�stage neighbors of nx. To make sure that no violationsour, we require:1. r 2 �eldf (�(n)) for all hn; f; nxi 2 H, and2. hr; fi 2 sloti(�(n)) for all hnx; f; ni 2 H and every slot i suh that hr0; fi 2sloti(�(n))This is suÆient to guarantee onW(�; H; o�stage(H)). To ensure ondition 2) inDe�nition 22 of the abstration relation, we require that for every hf; gi 2 identities(r),1. hf; gi 2 identities(r0) or2. for all hnx; f; ni 2 H: K(n) = i and (hn; g; n0i 2 H implies n0 = nx).Symboli Exeution of roleChekThe symboli exeution of the statement roleChek(x1; : : : ; xp; ra) ensures that theonW prediate of the onrete semantis is satis�ed for the onrete heaps whihorrespond to the urrent abstrat role graph. The symboli exeution returns theerror graph ?G if � is inonsistent with ra or if any of the nodes ni referened by xifail to satisfy nodeChek.Aessibility ConditionThe analysis ensures that the aessibility ondition for the Load statement will besatis�ed in proedure pro before proedure pro is alled. This tehnique makes useof proedure e�ets and is desribed in Chapter 5.4.2.4 Node ChekThe analysis uses the nodeChek prediate to inrementally maintain the abstrationrelation. We �rst de�ne the prediate loalChek, whih roughly orresponds to theprediate loallyConsistent (De�nition 2), but ignores the nonloal ayliity onditionand additionally ensures ondition 2) from De�nition 22.49

www.manaraa.com

De�nition 25 For a role graph G = hH; �;Ki, an individual node n and a set S, theprediate loalChek(n;G) holds i� the following onditions are met. Let r = �(n).1A. (Outgoing �elds hek) For �elds f 2 F , if hn; f; n0i 2 H then �(n0) 2 �eldf (r).2A. (Inoming slots hek) Let fhn1; f1i; : : : ; hnk; fkig = fhn0; fi j hn0; f; ni 2 Hg bethe set of all aliases of node n in abstrat heap H. Then k = slotno(r) and thereexists a permutation p of the set f1; : : : ; kg suh that h�(ni); fii 2 slotpi(r) forall i.3A. (Identity Chek) If hn; f; n0i 2 H, hn0; g; n00i 2 H, hf; gi 2 identities(r), andK(n0) = i, then n = n00.4A. (Neighbor Identity Chek) For every edge hn0; f; ni 2 H, if K(n0) = i, �(n0) = r0and hf; gi 2 identities(r0) then hn; g; n0i 2 H.5A. (Field Sanity Chek) For every f 2 F there is exatly one edge hn; f; n0i 2 H.Conditions 1A and 2A orrespond to onditions 1) and 2) in De�nition 2. Condition3) in De�nition 19 is not neessarily implied by ondition 3A) if some of the neighborsof n are summary nodes. Condition 3) annot be established based only on summarynodes, beause verifying an identity onstraint for �eld f of node n where hn; f; n0i 2H requires knowing the identity of n0, not only its existene and role. We thereforerely on Condition 2) of the De�nition 22 to ensure that identity relations of neighborsof node n are satis�ed before n moves o�stage.The prediate ayChek(n;G; S) veri�es the ayliity ondition from De�ni-tion 19.De�nition 26 We say that node n 2 nodes(H) satis�es an ayliity hek in graphG = hH; �;Ki with respet to set S, and we write ayChek(n;G; S), i� it is notthe ase that H ontains a yle n1; f1; : : : ; ns; fs; n1 where n1 = n, f1; : : : ; fs 2ayli(�(n)) and n1; : : : ; ns 2 S.This enables us to de�ne the nodeChek prediate.De�nition 27 nodeChek(n;G; S) holds i� both the prediate loalChek(n;G) andthe prediate ayChek(n;G; S) hold.

50

www.manaraa.com

Chapter 5Interproedural Role AnalysisThis hapter desribes the interproedural aspets of our role analysis. Interpro-edural role analysis an be viewed as an instane of the funtional approah tointerproedural data-ow analysis [80℄. For eah program point p, the role analysisapproximates program traes from proedure entry to point p. The solution in [80℄proposes tagging the entire data-ow fat G at point p with the data ow fat G0at proedure entry. In ontrast, our analysis omputes the orrespondene betweenthe heaps at proedure entry and the heaps at point p at the granularity of sets ofobjets that onstitute the role graphs. This allows our analysis to detet whih re-gions of the heap have been modi�ed. We approximate the onrete exeutions ofa proedure with proedure transfer relations onsisting of 1) an initial ontext and2) a set of e�ets. E�ets are �ne-grained transfer relations whih summarize loadand store statements and an naturally desribe loal heap modi�ations. In thiswork we assume that proedure transfer relations are supplied and we are onernedwith a) verifying that transfer relations are a onservative approximation of proedureimplementation b) instantiating transfer relations at all sites.5.1 Proedure Transfer RelationsA transfer relation for a proedure pro extends the proedure signature with aninitial ontext denoted ontext(pro), and proedure e�ets denoted e�et(pro).5.1.1 Initial ContextFigures 5-1 and 5-2 ontain examples of initial ontext spei�ation. An initial ontextis a desription of the initial role graph hHIC; �IC; KICi where �IC and KIC are determinedby a nodes delaration and HIC is determined by a edges delaration. The initial rolegraph spei�es a set of onrete heaps at proedure entry and assigns names for setsof nodes in these heaps. The next de�nition is similar to De�nition 22.De�nition 28 We say that a onrete heap hH; �i is represented by the initial rolegraph hHIC; �IC; KICi and write hH; �i�0hHIC; �IC; KICi, i� there exists a funtion h0 :nodes(H)! nodes(HIC) suh that 51

www.manaraa.com

1. onW(�; H; h�10 (read(pro));2. h0 is a graph homomorphism;3. KIC(n) = i implies jh�10 (n)j � 1;4. h0(null) = null and h0(pro) = pro;5. �(o) = �IC(h0(o)) for every objet o 2 nodes(H).Here read(pro) is the set of initial-ontext nodes read by the proedure (see below).For simpliity, we assume one ontext per proedure; it is straightforward to generalizethe treatment to multiple ontexts.A ontext is spei�ed by delaring a list of nodes and a list of edges.A list of nodes is given with nodes delaration. It spei�es a role for every nodeat proedure entry. Individual nodes are denoted with lowerase identi�ers, summarynodes with upperase identi�ers. By using summary nodes it is possible to indiatedisjointness of entire heap regions and reahability between nodes in the heap.There are two kinds of edges in the initial role graph: parameter edges and heapedges. A parameter edge p->pn is interpreted as hpro; p; pni 2 HIC. We require everyparameter edge to have an individual node as a target, we all suh node a parameternode. The role of a parameter node referened by parami(pro) is always preRi(pro).Sine di�erent nodes in the initial role graph denote disjoint sets of onrete objets,parameter edgesp1 -> n1p2 -> n1imply that parameters p1 and p2 must be aliased,p1 -> n1p2 -> n2fore p1 and p2 to be unaliased, whereasp1 -> n1|n2p2 -> n1|n2allow for both possibilities. A heap edge n -f-> m denotes hn; f; mi 2 HIC. Theshorthand notationn1 -f-> n2-g-> n3denotes two heap edges hn1; f; n2i; hn1; g; n3i 2 HIC. An expression n1 -f-> n2|n3denotes two edges n1 -f-> n2 and n1 -f-> n3. We use similar shorthands for pa-rameter edges.Example 29 Figure 5-1 shows an initial ontext graph for the kill proedure fromExample 17. It is a re�nement of the role referene diagram of Figure 1-1 as it givesdesription of the heap spei� to the entry of kill proedure. The initial ontext52

www.manaraa.com

LL1

SleepingProc

proc

null

lx

l

l2

LL2

ph

P1

P2

px

p

proc

proc

proc

proc

proc
proc

proc

nodes ph : RunningHeader,P1, px, P2 : RunningPro,lx : LiveHeader,LL1, l2, LL2 : LiveList;edges p-> px, l-> px,ph -next-> P1|px-prev-> px|P2,P1 -next-> P1|px-prev-> ph|P1,px -next-> P2|ph-prev-> P1|ph,P2 -next-> P2|ph-prev-> P2|px,lx -next-> LL1|l2,LL1 -next-> LL1|l2-pro-> P1|P2|SleepingProl2 -next-> LL2|null-pro-> px,LL2 -next-> LL2|null-pro-> P1|P2|SleepingProFigure 5-1: Initial Context for kill Proedure
53

www.manaraa.com

makes expliit the fat that there is only one header node for the list of runningproesses (ph) and one header node for the list of all ative proesses (lx). Moreimportantly, it shows that traversing the list of ative proesses reahes a node l2whose pro �eld referenes the parameter node px. This is suÆient for the analysisto onlude that there will be no null pointer dereferenes in the while loop of killproedure sine l2 is reahed before null. 4We assume that the initial ontext always ontains the role referene diagram RRD(De�nition 8). Nodes from RRD are alled anonymous nodes and are referred to viarole name. This further redues the size of initial ontext spei�ations by leveragingglobal role de�nitions. In Figure 5-1 there is no need to speify edges originatingfrom SleepingPro or even mention the node SleepingTree, sine role de�nitionsalone ontain enough information on this part of the heap to enable the analysis ofthe proedure.5.1.2 Proedure E�etsProedure e�ets onservatively approximate the region of the heap that the pro-edure aesses and indiate hanges to the referening relationships in that region.There are two kinds of e�ets: read e�ets and write e�ets.A read e�et spei�es a set read(pro) of initial graph nodes aessed by the proe-dure. It is used to ensure that the aessibility ondition in Setion 3.4.3 is satis�ed.If the set of nodes denoted by read(pro) is mapped to a node n whih is onstage inthe aller but is not an argument of the proedure all, a role hek error is reportedat the all site.Write e�ets are used to modify aller's role graph to onservatively model theproedure all. A write e�et e1:f = e2 approximates Store operations within aproedure. The expression e1 denotes objets being written to, f denotes the �eldwritten, and e2 denotes the set of objets whih ould be assigned to the �eld. Writee�ets are may e�ets by default, whih means that the proedure is free not toperform them. It is possible to speify that a write e�et must be performed bypre�xing it with a \!" sign.Example 30 In Figure 5-2, the insert proedure inserts an isolated ell into theend of an ayli singly linked list. As a result, the role of the ell hanges to LN. Theinitial ontext delares parameter nodes ln and xn (whose initial roles are deduedfrom roles of parameters), and mentions anonymous LN node from a default opy ofthe role referene diagram RRD. The ode of the proedure is summarized with twowrite e�ets. The �rst write e�et indiates that the proedure may perform zero ormore Store operations to �eld next of nodes mapped to ln or LN in ontext(pro).The seond write e�et indiates that the exeution of the proedure must perform aStore to the �eld next of xn node where the referene stored is either a node mappedonto anonymous LN node or null. 4E�ets also desribe assignments that proedures perform on the newly reatednodes. Here we adopt a simple solution of using a single summary node denoted NEW54

www.manaraa.com

proedure insert(l : L,x : IsolatedN ->> LN)nodes ln, xn;edges l-> ln, x-> xn,ln -next-> LN|null;effets ln|LN . next = xn,! xn.next = LN|null;loal , p;{ p = l; = l.next;while (!=null) {p = ; = p.next;}p.next = x;x.next = ;setRole(x:LN);} Figure 5-2: Insert Proedure for Ayli Listto represent all nodes reated inside the proedure. We write nodes0(HIC) for the setnodes(HIC) [fNEWg.Example 31 Proedure insertSome in Figure 5-3 is similar to proedure insertin Figure 5-2, exept that the node inserted is reated inside the proedure. It istherefore referred to in e�ets via generi summary node NEW. 4We represent all may write e�ets as a set mayWr(pro) of triples hnj; f; n0jiwhere n; n0j 2 nodes0(HIC) and f 2 F . We represent must write e�ets as a se-quene mustWrj(pro) of subsets of the set K�1IC (i)� F � nodes0(HIC). Here 1 � j �mustWrNo(pro).To simplify the interpretation of the delared proedure e�ets in terms of on-rete reads and writes, we require the union [imustWri(pro) to be disjoint fromthe set mayWr(pro). We also require the nodes n1; : : : ; nk in a must write e�etn1j � � � jnk:f = e2 to be individual nodes. This allows strong updates when instanti-ating e�ets (Setion 5.3.2).5.1.3 Semantis of Proedure E�etsWe now give preise meaning to proedure e�ets. Our de�nition is slightly ompli-ated by the desire to apture the set of nodes that are atually read in an exeutionwhile still allowing a ertain amount of observational equivalene for write e�ets.The e�ets of proedure pro de�ne a subset of permissible program traes inthe following way. Consider a onrete heap H with role assignment � suh that55

www.manaraa.com

proedure insertSome(l : L)nodes ln;edges l-> ln,ln -next-> LN|null;effets ln|LN . next = NEW,NEW.next = LN|null;aux , p, x;{ p = l; = l.next;while (!=null) {p = ; = p.next;}x = new;p.next = x;x.next = ;setRole(x:LN);} Figure 5-3: Insert Proedure with Objet AlloationhH; �i�0hHIC; �IC; KICi with graph homomorphism h0 from De�nition 28. Considera trae T starting from a state with heap H and role assignment �. Extrat thesubsequene of all loads and stores in trae T . Replae Load x=y.f by onrete readread ox where ox is the onrete objet referened by x at the point of Load, andreplae Store x.f=y by a onrete write ox:f = oy where ox is the objet referenedby x and oy objet referened by y at the point of Store. Let p1; : : : ; pk be thesequene of all onrete read statements and q1; : : : ; qk the sequene of all onretewrite statements. We say that trae T starting at H onforms to the e�ets i� forall hoies of h0 the following onditions hold:1. h0(o) 2 read(pro) for every pi of the form read o2. there exists a subsequene qi1 ; : : : ; qit of q1; : : : ; qk suh that(a) exeuting qi1 ; : : : ; qit on H yields the same result as exeuting the entiresequene q1; : : : ; qk(b) the sequene qi1 ; : : : ; qit implements write e�ets of proedure proA typial way to obtain a sequene qi1 ; : : : ; qit from the sequene q1; : : : ; qk is toonsider only the last write for eah pair hoi; fi of objet and �eld.We say that a sequene qi1 ; : : : ; qit implements write e�ets mayWr(pro) andmustWri(pro) for 1 � i � i0, i0 = mustWrNo if and only if there exists an inje-tion s : f1; : : : ; i0g ! fi1; : : : ; itg suh that56

www.manaraa.com

1. hh0(o); f; h0(o0)i 2 mustWri(pro) for every onrete write qs(i) of the form o:f =o0, and2. hh0(o); f; h0(o0)i 2 mayWr(pro) for all onrete writes qi of the form o:f = o0 fori 2 fi1; : : : ; itg n fs(1); : : : ; s(i0)g.Here h0(n) = h0(n) for n 2 nodes(H) where H is the initial onrete heap andh0(n) = NEW otherwise.It is possible (although not very ommon) for a single onrete heap H to havemultiple homomorphisms h0 to the initial ontext HIC. Note that in this ase werequire the trae T to onform to e�ets for all possible valid hoies of h0. Thisplaes the burden of multiple hoies of h0 on proedure transfer relation veri�ation(Setion 5.2) but in turn allows the ontext mathing algorithm in Setion 5.3.1 toselet an arbitrary homomorphism between a aller's role graph and an initial ontext.5.2 Verifying Proedure Transfer RelationsIn this setion we show how the analysis makes sure that a proedure onforms to itsspei�ation, expressed as an initial ontext with a list of e�ets. To verify proeduree�ets, we extend the analysis representation from Setion 4.1. A non-error role graphis now a tuple hH; �;K; �; Ei where:1. � : nodes(H) ! nodes0(HIC) is initial ontext transformation that assigns aninitial ontext node �(n) 2 nodes(HIC) to every node n representing objets thatexisted prior to the proedure all, and assigns NEW to every node representingobjets reated during proedure ativation;2. E � [imustWri(pro) is a list of must write e�ets that proedure has performedso far.The initial ontext transformation � traks how objets have moved sine the begin-ning of proedure ativation and is essential for verifying proedure e�ets whih referto initial ontext nodes.We represent the list E of performed must e�ets as a partial map from the setK�1IC (i) � F to nodes0(HIC). This allows the analysis to perform must e�et foldingby reording only the last must e�et for every pair hn; fi of individual node n and�eld f .5.2.1 Role Graphs at Proedure EntryOur role analysis reates the set of role graphs at proedure entry point from the initialontext ontext(pro). This is simple beause role graphs and the initial ontext havesimilar abstration relations (Setions 4.1 and 5.1). The di�erene is that parametersin role graphs point to exatly one node, and parameter nodes are onstage nodes inrole graphs whih means that all their edges are \must" edges.Figure 5-4 shows the onstrution of the initial set of role graphs. First thegraph H0 is reated suh that every parameter parami(pro) referenes exatly one57

www.manaraa.com

[[entry�℄℄ = nhH; �;K; �; Ei ���P : fprog � fparami(pro)gi ! N;P � HICH0 = (HIC n fprog � param(pro)�N) [Pni = P (pro; parami(pro))H1 � H0H1 nH0 � fhn0; f; n00i j fn1; n2g \ fnigi 6= ;g8j : loalChek(nj; hH; �;Ki; nodes(H1))H1 n1k H2 n2k � � � npk H� = �ICK = KIC� = �ICE = ; oFigure 5-4: The Set of Role Graphs at Proedure Entryparameter node ni. Next graph H1 is reated by using loalChek to ensure thatparameter nodes have the appropriate number of edges. Finally, the instantiation isperformed on parameter nodes to ensure ayliity onstraints if the initial ontextdoes not make them expliit already.Statement s Transition Constraintsx = y.f hH ℄ fpro; x; nxg; �;K; �; Ei st=)hH ℄ fpro; x; nfg; �;K; �; Ei hpro; y; nyi; hny; f; nf i 2 H�(nf) 2 read(pro)x = y.f hH ℄ fpro; x; nxg; �;K; �; Ei st=)?G hpro; y; nyi; hny; f; nf i 2 H�(nf) =2 read(pro)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)hH ℄ fnx; f; nyg; �;K; �; Ei hpro; x; nxi; hpro; y; nyi 2 Hh�(nx); f; �(ny)i 2 mayWr(pro)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)hH ℄ fnx; f; nyg; �;K; �; E 0i hpro; x; nxi; hpro; y; nyi 2 Hh�(nx); f; �(ny)i 2 [imustWri(pro)E 0 = updateWr(E; h�(nx); f; �(ny)i)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)?G hpro; x; nxi; hpro; y; nyi 2 Hh�(nx); f; �(ny)i =2 mayWr(pro)[[imustWri(pro)x = new hH ℄ fpro; x; nxg; �;K; �; Ei st=)hH ℄ fpro; x; nng; �;K; � 0; Ei nn fresh� 0 = � [nn 7! NEW℄updateWr(E; hn1; f; n2i) = E[hn1; fi 7! n2℄Figure 5-5: Verifying Load, Store, and New Statements5.2.2 Verifying Basi StatementsTo ensure that a proedure onforms to its transfer relation the analysis uses the initialontext transformation � to assign every Load and Store statement to a delarede�et. Figure 5-5 shows new symboli exeution of Load, Store and New statements.58

www.manaraa.com

The symboli exeution of Load statement x=y.f makes sure that the node beingloaded is reorded in some read e�et. If this is not the ase, an error is reported.The symboli exeution of the Store statement x.f=y �rst retrieves nodes �(nx)and �(ny) in the initial role graph ontext that orrespond to nodes nx and ny in theurrent role graph. If the e�et h�(nx); f; �(ny)i is delared as a may write e�et theexeution proeeds as usual. Otherwise, the e�et is used to update the list E ofmust-write e�ets. The list E is heked at the end of proedure exeution.The symboli exeution of the New statement updates the initial ontext trans-formation � assigning �(nn) = NEW for the new node nn.The � transformation is similarly updated during other abstrat heap operations.Instantiation of node n0 into node n0 assigns �(n0) = �(n0), split opies values of �into the new set of isomorphi nodes, and normalization does not merge nodes n1 andn2 if �(n1) 6= �(n2).5.2.3 Verifying Proedure PostonditionsAt the end of the proedure, the analysis veri�es that �(ni) = postRi(pro) wherehpro; parami(pro); nii 2 H, and then performs node hek on all onstage nodesusing prediate nodeChek(n; hH; �;Ki; nodes(H)) for all n 2 onstage(H).At the end of the proedure, the analysis also veri�es that every performed e�etin E = fe1; : : : ; ekg an be attributed to exatly one delared must e�et. This meansthat k = mustWrNo(pro) and there exists a permutation s of set f1; : : : ; kg suh thates(i) 2 mustWri(pro) for all i.5.3 Analyzing Call SitesThe set of role graphs at the proedure all site is updated based on the proeduretransfer relation as follows. Consider proedure pro ontaining all site p 2 NCFG(pro)with proedure all pro0(x1; : : : ; xp). Let hHIC; �IC; KICi = ontext(pro0) be the initialontext of the allee.Figure 5-6 shows the transfer funtion for proedure all sites. It has the followingphases:1. Parameter Chek ensures that roles of parameters onform to the roles ex-peted by the allee pro0.2. Context Mathing (mathContext) ensures that the aller's role graphs rep-resent a subset of onrete heaps represented by ontext(pro0). This is done byderiving a mapping � from the aller's role graph to nodes(HIC).3. E�et Instantiation (FX�!) uses e�ets mayWr(pro0) and mustWri(pro0) inorder to approximate all strutural hanges to the role graph that pro0 mayperform.4. Role Reonstrution (RR�!) uses �nal roles for parameter nodes and globalrole delarations postRi(pro0) to reonstrut roles of all nodes in the part of therole graph representing modi�ed region of the heap.59

www.manaraa.com

[[pro0(x1; : : : ; xp)℄℄(G) =if 9G 2 G : :paramChek(G) then f?Ggelse try G1 = mathContext(G)if failed then f?Ggelse fG00 j hG; �i 2 G1haddNEW(G); �i FX�!hG0; �i RR�!G00gparamChek(hH; �;K; �; Ei) i�8ni : nodeChek(ni; G; o�stage(H) [fnigi)ni are suh that hpro; xi; nii 2 HaddNEW(hH; �;K; �; Ei) =hH [fn0g � F � fnullg;�[n0 7! unknown℄;K[n0 7! s℄;� [n0 7! NEW℄;Eiwhere n0 is fresh in HFigure 5-6: Proedure CallThe parameter hek requires nodeChek(ni; G; o�stage(H)[fnigi) for the parameternodes ni. The other three phases are explained in more detail below.5.3.1 Context MathingFigure 5-7 shows our ontext mathing funtion. The mathContext funtion takes aset G of role graphs and produes a set of pairs hG; �i where G = hH; �;K; �; Ei is arole graph and � is a homomorphism fromH toHIC. The homomorphism � guaranteesthat ��1(G) � ��10 (ontext(pro0)) sine the homomorphism h0 from De�nition 28 anbe onstruted from homomorphism h in De�nition 22 by putting h0 = � Æ h. Thisimplies that it is legal to all pro0 with any onrete graph represented by G.The algorithm in Figure 5-7 starts with empty maps � = nodes(G) � f?g andextends � until it is de�ned on all nodes(G) or there is no way to extend it further. Itproeeds by hoosing a role graph hH; �;K; �; Ei and node n0 for whih the mapping �is not de�ned yet. It then �nds andidates in the initial ontext that n0 an be mappedto. The andidates are hosen to make sure that � remains a homomorphism. Theaessibility requirement|that a proedure may see no nodes with inorret role|is enfored by making sure that nodes in inaessible are never mapped into nodesin read for the allee. As long as this requirement holds, nodes in inaessible anbe mapped onto nodes of any role sine their role need not be orret anyway. Wegenerally require that the set ��1(n00) for individual node n00 in the initial ontextontain at most one node, and this node must be individual. In ontrast, there might60

www.manaraa.com

mathContext(G) = math(fhG; nodes(G)� f?gi j G 2 Gg)math : P(RoleGraphs� (N [f?g)N)* P(RoleGraphs�NN)math(�) =�0 := fhG; �i 2 � j ��1(?) 6= ;g;if �0 = ; then return �;hhH; �;K; �; Ei; �i := hoose �0;�0 = � n hhH; �;K; �; Ei; �i;paramnodes := fn j 9i : hpro; xi; ni 2 Hg;inaessible := onstage(H) n paramnodes;n0 := hoose ��1(?);andidates := fn0 2 nodes(HIC) j(n0 =2 inaessible and �IC(n0) = �(n0)) or(n0 2 inaessible and n0 =2 read(pro0))gThn0;f;ni2H�(n)6=? nn0 ��� hn0; f; �(n)i 2 HICoThn;f;n0i2H�(n)6=? nn0 ��� h�(n); f; n0i 2 HICo;if andidates = ; then fail ;if andidates = fn00g; K(n0) = s;KIC(n00) = i; ��1(n00) = ;then math(�0 [fhG0; �[n1 7! n00℄i j hH; �;K; �; Ei n1*n0G0g)else n00 := hoose fn0 2 andidates j K(n0) = s or(K(n0) = i; ��1(n0) = ;)gmath(�0 [hhH; �;K; �; Ei; �[n0 7! n00℄i);Figure 5-7: The Context Mathing Algorithm
61

www.manaraa.com

be many individual and summary nodes mapped onto a summary node. We relaxthis requirement by performing instantiation of a summary node of the aller if, atsome point, that is the only way to extend the mapping � (this orresponds to the�rst reursive all in the de�nition of math in Figure 5-7).The algorithm is nondeterministi in the order in whih nodes to be mathedare seleted. One possible ordering of nodes is depth-�rst order in the role graphstarting from parameter nodes. If some nondeterministi branh does not sueed, thealgorithm baktraks. The funtion fails if all branhes fail. In that ase the proedureall is onsidered illegal and ?G is returned. The algorithm terminates sine everyproedure all lexiographially inreases the sorted list of numbers j�[nodes(H)℄j forhhH; �;K; �; Ei; �i 2 �.5.3.2 E�et InstantiationThe result of the mathing algorithm is a set of pairs hG; �i of role graphs andmappings. These pairs are used to instantiate proedure e�ets in eah of the rolegraphs of the aller. Figure 5-8 gives rules for e�et instantiation. The analysis �rstveri�es that the region read by the allee is inluded in the region read by the aller.Then it uses map � to �nd the inverse image S of the performed e�ets. The e�etsin S are grouped by the soure n and �eld f . Eah �eld n:f is applied in sequene.There are three ases when applying an e�et to n:f :1. There is only one node target of the write in nodes(H) and the e�et is a mustwrite e�et. In this ase we do a strong update.2. The ondition in 1) is not satis�ed, and the node n is o�stage. In this ase weonservatively add all relevant edges from S to H.3. The ondition in 1) is not satis�ed, but the node n is onstage i.e. it is aparameter node1. In this ase there is no unique target for n:f , and we annotadd multiple edges either as this would violate the invariant for onstage nodes.We therefore do ase analysis hoosing whih e�et was performed last. If thereare no must e�ets that a�et n, then we also onsider the ase where theoriginal graph is unhanged.5.3.3 Role ReonstrutionProedure e�ets approximate strutural hanges to the heap, but do not provideinformation about role hanges for non-parameter nodes. We use the role reonstru-tion algorithm RR�! in Figure 5-9 to onservatively infer possible roles of nodes afterthe proedure all based on role hanges for parameters and global role de�nitions.Role reonstrution �rst �nds the set N0 of all nodes that might be aessed bythe allee sine these nodes might have their roles hanged. Then it splits eah node1Non-parameter onstage nodes are never a�eted by e�ets, as guaranteed by the mathingalgorithm. 62

www.manaraa.com

hhH; �;K; �; Ei; �i FX�!h?G; �i where � [��1[read(pro0)℄℄ 6� read(pro)hhH; �;K; �; Ei; �i FX�!Gt where � [��1[read(pro0)℄℄ � read(pro)hH; �;K; �; Ei n1;f1` G1 ` � � � nt;ft` GtS = fhn; f; n0i 2 H j h�(n); f; �(n0)i 2 mayWr(pro0) [[imustWri(pro0)gfhn1; f1i; : : : ; hnt; ftig = fhn; fi j hn; f; n0i 2 SgSingle Write E�et Instantiation:hH1; �1; K1; �1; E1i n;f̀G0i�ase ondition resultdeterministi e�et fn1 j hn; f; n1i 2 Sg = fn0g and9i : h�(n); f; �(n0)i 2 mustWri(pro0) G0 = hH2; �1; K1; �1; E2iH2 = H1 n fhn; f; n1i j hn; f; n1i 2 H1g[fhn; f; n0igE2 = updateWr(E1; h�(n); f; �(n0)i)nondeterministi e�etfor non-parameters jfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro0)n 2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg � mayWr(pro) G0 = hH2; �1; K1; �1; E2iH2 = orem(H1)[fhn; f; n1i j hn; f; n1i 2 Sgjfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro0)n 2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg 6� mayWr(pro) G0 = ?Gnondeterministi e�etfor parameters jfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro0)n =2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg � mayWr(pro) G0 = hH2; �1; K1; �1; E2iH0 = H1 n fhn; f; n1i j hn; f; n1i 2 H1gH2 = H1 or H2 = H0 [fhn; f; n1ighn; f; n1i 2 S:(fn1 j hn; f; n1i 2 Sg = fn1g and9i : h�(n); f; �(n0)i 2 mustWri(pro0))n =2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg 6� mayWr(pro) G0 = ?Gorem(H1) = (H1 n fhn; f; n0i j hn; f; n0i 2 H1g; if 9i 9n0 : h�(n); f; �(n0)i 2 mustWri(pro0)H1; otherwiseFigure 5-8: E�et Instantiation
63

www.manaraa.com

hhH; �;K; �; Ei; �i RR�!hH 0; �0; K 0; � 0; E 0ihpro; xi; nii 2 HN0 = ��1[read(pro0)℄s : N0 � R! N where s(n; r) are all di�erent nodes fresh in H�0 = � n (N0 �R) [fhs(n; r); ri j n 2 N0; r 2 Rgn(fnigi � R) [fhni; postRi(pro)igK 0(s(n; r)) = K(n)� 0(s(n; r)) = �(n)E 0 = EH0 = H n fhn1; f; n2i j n1 2 N0 or n2 2 N0g[fhs(n1; r1); f; s(n2; r2)i j hn1; f; n2i 2 H; hr1; f; r2i 2 RRDg[fhn1; f; s(n2; r2)i j hn1; f; n2i 2 H; h�IC(�(n1)); f; r2i 2 RRDg[fhs(n1; r1); f; n2i j hn1; f; n2i 2 H; hr1; f; �IC(�(n2))i 2 RRDgH 0 = GC(H0) Figure 5-9: Call Site Role Reonstrutionn 2 N0 into jRj di�erent nodes �(n; r), one for eah role r 2 R. The node �(n; r)represents the subset of objets that were initially represented by n and have roler after proedure exeutes. The edges between nodes in the new graph are derivedby simultaneously satisfying 1) strutural onstraints between nodes of the originalgraph; and 2) global role onstraints from the role referene diagram. The nodes�(n; r) not onneted to the parameter nodes are garbage olleted in the role graph.In pratie, we generate nodes �(n; r) and edges on demand starting from parametersmaking sure that they are reahable and satisfy both kinds of onstraints.

64

www.manaraa.com

Chapter 6ExtensionsThis hapter presents extensions of the basi role system. The multislot extensionallows statially unbounded number of aliases for objets. Root variables allow stakframes to be treated as the soure of aliases in role de�nitions. Singleton roles al-low role delarations to speify that there is only one objet of a given role. Theextension for asading role hanges allows the analysis to verify more omplex rolehanges. The extension to partial roles allows mutually independent role propertiesto be spei�ed separately and then ombined.6.1 MultislotsA multislot hr0; fi 2 multislots(r) in the de�nition of role r allows any number ofaliases ho0; f; oi 2 H for �(o0) = r0 and �(o) = r. We require multislots multislots(r)to be disjoint from all sloti(r). To handle multislots in role analysis we relax theondition 5) in De�nition 22 of the abstration relation by allowing h to map morethan one onrete edge ho0; f; oi onto abstrat edge hn0; f; ni 2 H terminating atan onstage node n provided that h�(n0); fi 2 multislots(�(n)). The nodeChek andexpansion relation � are then extended appropriately. Note that a role graph doesnot represent the exat number of referenes that �ll eah multislot. The analysistherefore does not attempt to reognize ations that remove the last referene fromthe multislot. One an objet plays a role with a multislot, all subsequent roles thatit plays must also have the multislot.6.2 Root VariablesRoot variables allow roles to be de�ned not only by heap referenes from other nodesbut also by referenes from proedure variables. The root variables are treated likeheap referenes for the purpose of role onsisteny; they are referenes from stakframe objets. A proedure with root variables indues a role with �elds orrespond-ing to root variables and no slots.Example 32 Let us reonsider the sheduler example in Figure 1-2. We an require65

www.manaraa.com

the LiveHeader node to be referened by the root variable proesses in the proe-dure main, and RunningHeader to be referened by the root variable running in thefollowing way.role LiveHeader {fields first : LiveList | null;slots main.proesses;}role RunningHeader {fields next : RunningPro | RunningHeader,prev : RunningPro | RunningHeader;slots main.running,RunningHeader.next | RunningPro.next,RunningHeader.prev | RunningPro.prev;identities next.prev, prev.next;}proedure main()rootvar proesses : LiveHeader | null,running : RunningHeader | null;{ ... }This impliitly generates a role de�nition for the main proedure.role main {fields proesses : LiveHeader,running : RunningHeader;}46.3 Singleton RolesSingleton roles are a simple way to improve the preision of role spei�ations androle analysis by indiating roles for whih there is only a single heap objet of thatrole. Singleton roles are often referred to from root variables.We say that the prediate singleton(r) holds for role r 2 R if j��1 (r)j � 1 for everyvalid onrete role assignment � of a heap reated by the program. In essene, thisprediate allows distinguishing between individual objets and sets of objets in rolede�nitions.Example 33 The intention of the de�nition in Figure 6-1 is to speify a irularsingly linked list with a header node. However, the spei�ation in Figure 6-1 is toogeneral. For example, the graph in Figure 6-2 satis�es this spei�ation. If we requiresingleton(H), then the graph in Figure 6-2 does not satisfy role delarations any more.4 66

www.manaraa.com

role H { // header nodefields next : H | N;slots H.next | N.next;}role N { // internal nodefields next : H | N;slots H.next | N.next;} Figure 6-1: Roles for Cirular List
H

N

H

N

N

H

Figure 6-2: An Instane of Role DelarationsThe developer an speify values of singleton prediate expliitly. In some asesthe analysis alone an infer this information using the following rules:� proedure ativation reords are singleton if they are not members of a ylethe all graph;� if the roles Rs 2 R are singleton and r0 2 R is suh that one of the followingriteria holds:{ there exists f 2 F suh that �eldf(r) � Rs, or{ there exists i suh that sloti(r0) � Rs,then r0 is a singleton role as well.When analyzing programs with singleton roles, the role analysis maintains theinvariant that there is at most one node for eah singleton role r by preventingmultiple nodes with role r to go o�stage. When traversing data strutures, thesingleton onstraint eliminates ases in where two nodes with a singleton role arebrought onstage. 67

www.manaraa.com

role BufferNode {fields next : BufferNode | null;slots BufferNode.next | main.buffer;ayli next;}role WorkNode {fields next : WorkNode | null;WorkNode.next | main.work;ayli next;}proedure main()rootvar buffer : BufferNode | null,work : WorkNode | null;auxvar x, y;{ // reate buffer and work lists...// swap buffer and workx = buffer;y = work;buffer = y;work = x;setRoleCasade(x:WorkNode, y:BufferNode);} Figure 6-3: Example of a Casading Role ChangeA natural generalization of singleton roles arises in the ontext of parametrizedroles [57℄. The extension to parametrized roles is orthogonal to the other aspets ofroles and we do not onsider it in this thesis.6.4 Casading Role ChangesIn some ases it is desirable to hange roles of an entire set of o�stage objets withoutbringing them onstage. We use the statement setRoleCasade(x1 : r1; : : : ; xn : rn)to perform suh asading role hange of a set of nodes. The need for asading rolehanges arises when roles enode reahability properties.Example 34 Proedure main in Figure 6-3 has two root variables, buffer and work,eah being a root for a singly linked ayli list. Elements of the �rst list haveBufferNode role and elements of the seond list have WorkNode role. At some pointproedure swaps the root variables buffer and work, whih requires all nodes in both68

www.manaraa.com

lists to hange the roles. These role hanges are triggered by the setRoleCasadestatement. The statement indiates new roles for onstage nodes, and the analysisasades role hanges to o�stage nodes. 4
hH; �;K; �; Ei st;hH; �0; K; �; Eist = setRoleCasade(x1 : r1; : : : ; xn : rn) ni : hpro; xi; nii 2 H�0(ni) = ri�0(n) = �(n); n 2 onstage(H) n fnigiN0 = fn 2 o�stage(H) j 9n0 2 neighbors(n;H) : �(n0) 6= �0(n0)g8n 2 N0 : asadingOk(n;H; �;K; �0)Figure 6-4: Abstrat Exeution for setRoleCasadeGiven a role graph hH; �;K;Ei asading role hange �nds a new valid role assign-ment �0 where the onstage nodes have desired roles and the roles of o�stage nodes areadjusted appropriately. Figure 6-4 shows abstrat exeution of the setRoleCasadestatement. Here neighbors(n;H) denotes nodes in H adjaent to n. The onditionasadingOk(n;H; �;K; �0) makes sure it is legal to hange the role of node n from�(n) to �0(n) given that the neighbors of n also hange role aording to �0. Thishek resembles the hek for setRole statement in Setion 4.2.3. Let r = rho(n)and r0 = �0(n). Then asadingOk(n;H; �;K; �0) requires the following onditions:1. hn; f; n1i 2 H implies �0(n1) 2 �eldf (r0);2. slotno(r0) = slotno(r) = k, and for every list hn1; f1; ni; : : : ; hnk; fk; ni 2 Hif there is a permutation p : f1; : : : ; kg ! f1; : : : ; kg suh that h�(ni); fii 2slotpi(r), then there is a permutation p0 : f1; : : : ; kg ! f1; : : : ; kg suh thath�(ni); fii 2 slotpi(r0);3. identity relations were already satis�ed or an be expliitly heked: hf; gi 2identities(�0(n)) implies(a) hf; gi 2 identities(�(n)) or(b) for all hn; f; n0i 2 H: K(n0) = i, andif hn0; g; n00i 2 H then n00 = n;4. either ayli(�0(n)) � ayli(�(n)) orayChek(n; hH; �0; Ki; o�stage(H)).In pratie there may be zero or more solutions that satisfy onstraints for a givenasading role hange. Seleting any solution that satis�es the onstraints is soundwith respet to the original semantis. A useful heuristi for searhing the solutionspae is to �rst explore branhes with as few roles hanged as possible. If no solutionsare found, an error is reported.6.5 Partial RolesIn this setion we extend our framework to allow ombining roles that speify mutuallyindependent properties of objets. First we generalize �eld and slot onstraints to69

www.manaraa.com

allow speifying partial information about �elds and slots of eah role. We then givean alternative semantis of roles where eah node is assigned a set of roles. A pleasantproperty of this semantis of roles is that the sets of roles appliable to eah �eld anbe de�ned as the greatest �xpoint of the reursive role de�nitions. We then sketh anextension of ontext mathing and all site role reonstrution that allows proeduresto be analyzed without speifying the full set of roles of objets in the initial rolegraphs.6.5.1 Partial Roles and Role SetsThis setion introdues partial roles. A partial role gives onstraints only for a subsetof �elds and slots. We use the term simple roles to refer to non-partial roles onsideredso far.Example 35 Consider the de�nition of a tree in Figure 6-5. This de�nition spei�esrole TR { // tree rootfields left : TN | null,right : TN | null;left,right slots ;}role TN { // tree nodefields left : TN | null,right : TN | null;left,right slots : TR.left | TR.right | TN.left | TN.right;} Figure 6-5: De�nition of a Treethat a data struture is a tree along the left and right �elds, but does not onstrain�elds other than left and right. Similarly, the de�nition of a linked list in Figure 6-6 gives only requirements for the next �eld. Note how de�nition of LH spei�es apartial \negative" slot onstraint, namely the absene of a next �eld.A de�nition for a threaded tree, for example, an leverage the preeding rolede�nitions to de�ne the omposite data struture.role LTN extends TN,LN { // linked tree nodefields data : Stored;}Every objet playing LTN role simultaneously plays TN and LN roles as well. In general,an objet playing more roles satis�es more onstraints. 4For partial roles, we hange the onvention that the �elds not mentioned in afields delaration are always onstrained to be null. Instead, the absene of a70

www.manaraa.com

role LH { // list headerfields next : NL | null;next slots ;}role LN { // list nodefields next : LN | null;next slots LH.next | LN.next;} Figure 6-6: De�nition of a List�eld f implies no onstraints on the roles that �eld f referenes. A slot onstraintfor a partial role r ontains an additional set sope(r) = ff1; : : : ; fkg of �elds thatdetermine the sope of the slot onstraints. A slot delaration gives omplete aliasesfor referenes along sope(r) �elds, but poses no requirements on aliases from other�elds.Partial role de�nitions an reuse previous role de�nitions using the extends key-word. We represent the extends relationships by the set of roles subroles(r) for eahrole r. A set S � R is losed if subroles(r) � S for every r 2 S.6.5.2 Semantis of Partial RolesTo give the semantis of partial roles we de�ne role-set assignment �s to assign alosed set of roles to every objet. We say that a role assignment � is a hoie ofa role-set assignment �s i� �(r) 2 �s(r) for every role r 2 R. We �rst generalizeloallyConsistent to take the role of the objet o independently of role assignment �.This de�nition is idential to De�nition 2 exept that the role of the objet o is rinstead of �(o).De�nition 36 loallyConsistent(o;H; �; r) i� all of the following onditions are met.1) For every �eld f 2 F and ho; f; o0i 2 H, �(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 Hg be the set of all aliasesof node o. Then k = slotno(r) and there exists some permutation p of the setf1; : : : ; kg suh that h�(oi); fii 2 slotpi(r) for all i.3) If ho; f; o0i 2 H, ho0; g; o00i 2 H, andhf; gi 2 identities(r), then o = o00.4) It is not the ase that graph H ontains a yleo1; f1; : : : ; os; fs; o1 where o1 = o andf1; : : : ; fs 2 ayli(r)We now de�ne the loal role-set onsisteny as follows.71

www.manaraa.com

De�nition 37 loallyRSConsistent(o;H; �s) i� for every r 2 �s(o) there exists ahoie � of �s suh that loallyConsistent(o;H; �; r). We say that a heap H is role-set onsistent for a role-set assignment �s if loallyRSConsistent(o;H; �s) for everyo 2 nodes(H). We all suh role-set assignment �s a valid role-set assignment.We similarly extend the de�nitions of onsisteny for a given set of nodes from De�-nition 20.The following observations follow from De�nition 37:1. if �s is a valid role assignment, then j�s(o)j � 1 for every objet o, otherwisethere would be no � whih is a hoie for �s;2. if j�s(o)j = 1 for all o 2 nodes(H), then heap onsisteny for partial roles isequivalent to heap onsisteny for simple roles.6.5.3 Fixpoint De�nition of the Greatest Role AssignmentWe �rst show that the set of all valid role-set assignments has a least upper bound.We �rst de�ne a partial order on funtions from nodes(H) to P(R).De�nition 38 �s1 v �s2 i� �s1(o) � �s2(o) for every o 2 H.We then introdue the pointwise union.De�nition 39 (�s1 t �s2)(o) = �s1(o) [�s2(o)The union of two losed role-sets is a losed role-set, so the merge of two role-setassignments is still a role-set assignment. Moreover, if both role-set assignments arevalid, the pointwise union is also a valid role-set assignment, as the following propertyshows.Property 40 Let �s1 and �s2 be valid role-set assignments for the heap H. Then�s1 t �s2 is also a valid role assignment.The property holds beause every role assignment � whih is a hoie of �s1 or ahoie of �s2 is also a hoie of �s1 t �s2.Beause there is a �nite number of role-set assignments, Property 40 implies theexistene of the greatest role-set assignment �sM whih is the merge of all valid roleassignments.De�nition 41 Let �s1, . . . , �sN be all valid role assignments for the heap H. Wede�ne the greatest role assignment �sM as�sM = �s1 t � � � t �sN72

www.manaraa.com

De�nition 42 Let �s : nodes(H) ! P(R). Then F (�s) : nodes(H) ! P(R) is ade�ned by F (�s)(o) = fr 2 �s(o) j subroles(r) � �s(o) andthere exists a hoie � of �s suh thatloallyConsistent(o;H; �; r)gProperty 43 The greatest role-set assignment for a onrete heap H is a greatest�xpoint of funtion F .Proof. It is easy to see that F (�s1) v F (�s2) whenever �s1 v �s2. Also, F (�s) v �sand the empty role-set assignment �s(o) = ; is a �xpoint of F .Let �s0 be suh that �s0(o) = R for all o 2 H. Consider the sequene F i(�s0) fori � 0. There exists i0 suh that F i(�s0) = �s� for i � i0 where �s� is a �xpoint of F .Beause F (�s�)(o) = �s�(o) for eah o, it follows that �s� is a valid role-set assignment.Moreover, if �s is any other valid role-set assignment, then �s v F i(�s0) for every i, so�s v �s�. We onlude that the �xpoint �s� is the greatest valid role assignment �sM .6.5.4 Expressibility of Partial RolesThe partial roles allow data strutures to be desribed ompositionally. Anothernie property of partial roles is that there is a anonial role-set assignment �sM .A drawbak of onsidering only the greatest role-set assignment is that some datastruture onstraints are not expressible.Example 44 The set of yles of even length an be desribed using the followingsimple role de�nitions.role Even {fields next : Odd;slots Odd.next;}role Odd {fields next : Even;slots Even.next;}No odd length yle satis�es this role assignment. Eah even length yle o1; : : : ; o2khas two role assignments �1 and �2, where �1(o2i+1) = Odd and �1(o2i) = Even,whereas �2(o2i+1) = Even and �2(o2i) = Odd.On the other hand, the same role de�nitions have unique greatest role assignment�s = �s1 t �s2, where �s(o) = fEven; Oddg for all o. This role assignment is valid notonly for even length yles, but also for odd length yles. 4The onstraints that an be spei�ed by partial roles and role-set assignments aresimilar to onstraints that an be spei�ed using simple roles and role assignments.73

www.manaraa.com

In the absene of ayliity onstraints, given a set of partial role de�nitions, it ispossible to exhibit a set of simple role de�nitions whih apture the same onstraints.This onstrution introdues a simple role eah losed set of partial roles, similarto the onstrution showing the equivalene of deterministi and nondeterministi�nite state automata [61℄ or deterministi and nondeterministi �nite tree automata[34, 15℄. Constrution is ompliated by the form of our slot onstraints, but anbe done by introduing additional roles that simulate slot onstraint onjuntion.(The ability to perform onjuntion of slot onstraints is an easy onsequene of theequivalene of slot onstraints with the generalized slot onstraints in Setion A.1.)The onstrution ould also be performed for ayliity onstraints if we generalizedthem to speify a family of sets of �elds and forbid yles along paths with �elds fromeah of the sets in the family.Even after performing this onstrution, it remains the fat that partial rolesindue additional partial order struture, whih is not available in simple roles.6.5.5 Role SubtypingWe now onsider the problem of role subtyping at proedure all sites. A larger setof nodes for a node implies stronger onstraints for that node. We would then expeta proedure all to be legal when the aller's role-sets are supersets of role-sets ofthe initial ontext. The problem is that a larger set �s(n), while implying a strongeronstraint on the node n, implies weaker onstraint on the nodes adjaent to n. Thefollowing example shows that the superset onditions on role-sets is in general notsuÆient.Example 45 De�ne roles A and B as follows:role A {f slots A.f,B.f | A.f;}role B { }role C { }Consider the following role graph in the aller
AB B

A

f
f

f f

f

C

a
b

c

and assume that the allee has the following initial role graph.74

www.manaraa.com

B B

A

f
f

f f

f

C

a
b

c

Clearly there is a homomorphism � from the aller's role graph to the initial rolegraph suh that �s1(n) � �s2(�(n)) for all nodes n. The following heap is an instaneof the aller's role graph.
AB

A

B

B

C

f

f

f
f

a
b

c

However, it is not possible to assign sets of roles to objets to make it an instane ofthe role graph in the initial ontext. 4The following property shows that a simple restrition on slot onstraints makesthe role-set inlusion riterion valid.Property 46 Let hH; �s; Ki and hHIC; �sIC; KICi be role graphs and � : nodes(H) !nodes(HIC) a graph homomorphism suh that:1. �s(n) � �sIC(�(n)) for all n 2 nodes(H);2. if hn1; f; n0i 2 H, r0 2 �sIC(�(n0)), r1 2 �s(n1), and hr1; fi 2 sloti(r0) for somei, then hr2; fi 2 sloti(r0) for some r2 2 �sIC(�(n1)).Let H be a onrete heap suh and �s1 a valid role-set assignment for H. Assume thath is a homomorphism from H to H suh that �s1(o) = �s(h(o)) for all o 2 nodes(H).De�ne �s2(o) = �sIC(�(h(o)))for all o 2 nodes(H). Then �s2 is also a valid role-set assignment for H.75

www.manaraa.com

Proof. To show that �s2 is a valid role-set assignment for H, onsider any objeto 2 nodes(H) and one of its roles r0 2 �s2(o). Beause r0 2 �s2(o), identities andayliity onstraints hold for o. We show that �eld and slot onstraints hold as well.To show that �eld onstraints of r0 hold, onsider any edge ho; f; o1i 2 H. Thenhn; f; n1i 2 HIC where n = �(h(o)) and n1 = �(h(o1)). Beause HIC is a subgraph ofthe stati role diagram, �eldf(r0)\�sIC(n1) 6= ;, otherwise the edge hn; f; n1i would besuperuous. Sine �s2(o1) = �sIC(n1) by de�nition of �s2, we have �eldf(r0) \ �s2(o1) 6= ;whih means that the �eld onstraint for f is satis�ed in H.To show that slot onstraints of r0 hold, onsider any edge ho1; f; oi 2 H. Beause�s1 is a valid role assignment and r0 2 �s1(o), there exists slot i and role r1 2 �s1(o1)suh that hr1; fi 2 sloti(r0). By the assumption 2), sine hh(o1); f; h(o)i 2 H, r0 2�sIC(h(o)) and r1 2 �s(h(o1)), there exists r2 2 �sIC(�(h(o1)) suh that hr2; fi 2 sloti(r0).Sine �sIC(�(h(o1)) = �s2(o1), it follows that the slot onstraint of o is satis�ed.The ondition 2) in Property 46 an be replaed by a stronger but simpler ondi-tion.De�nition 47 We say that role r0 depends on r1 i� for some slot i, hr1; fi 2 sloti(r0)and there exists another slot j 6= i of role r0 suh that hr2; fi 2 slotj(r0) for some roler2.Property 48 Let hH; �s; Ki and hHIC; �sIC; KICi be role graphs and � : nodes(H) !nodes(HIC) a graph homomorphism suh that:1') �s(n) � �sIC(�(n)) for all n 2 nodes(H);2') if r1 2 �s(n) n �sIC(�(n)) for some n, and r0 depends on r1, then for all n0 2nodes(HIC), r0 =2 �sIC(n0).Then the ondition 2) of Property 46 is satis�ed.Proof. Let hn1; f; ni 2 H, r0 2 �sIC(n), and r1 2 �s(H) and hr1; fi 2 sloti(r0). Ifr1 2 �sIC(�(n)) then we an take r2 = r1 and the ondition 2) is satis�ed. Now assumer1 2 �s(n) n �sIC(�(n)). Sine r0 2 �sIC(n), by assumption 2'), r0 does not depend onr1. This means that i is the only slot of r0 that ontains the �eld f . Beause theedge h�(n1); f; �(n)i is in HIC, and HIC, it follows that hr2; fi 2 sloti(r0) for somer2 2 �sIC(n1). This means that the ondition 2) is satis�ed.Based on previous properties we an derive a ontext mathing algorithm thatallows role graphs in the all site to have larger sets of roles than nodes in the initialontext.In order to further inrease the preision of all site veri�ation, we would liketo preserve the larger larger set of role graphs in the aller. This is possible beauseproedure e�ets speify whih objet �elds an be modi�ed during exeution of thealler. The role reonstrution algorithm for partial roles is similar to algorithm inFigure 5-9 exept that it operates on sets of roles instead of individual roles. To76

www.manaraa.com

onsider how to preserve the wider set of roles, onsider a role r 2 �s(n) n �sIC(�(n)).The role reonstrution splits n into a set of nodes eah of whih has assigned somerole-set S. In the absene of write e�ets the algorithm would need to generate nodeswith role-sets S that do not ontain r. If the write e�ets imply that the role rannot be violated, then only role-sets S ontaining r need to be generated, whihinreases the preision and redues the size of role graphs after the proedure all.To ompute the set of roles that are preserved, role reonstrution starts with setsp(n) = �s(n) n �sIC(�(n)) assigned to eah node n, and iteratively dereases sets p(n)if a r 2 p(n) depends on a modi�ed �eld or previously eliminated role.We note that, similarly to multislots, partial roles allow a statially unboundednumber of aliases. Whereas multislots expliitly give permission for existene ofertain aliases, partial roles allow all the existene of aliases not mentioned in the rolede�nition.

77

www.manaraa.com

78

www.manaraa.com

Chapter 7Related WorkIn this hapter we present the relationship of our work with previous approahes toprogram analysis, heking, and veri�ation. We �rst ompare our work with thetypestate systems inluding alias types [82℄ and alulus of apabilities [19℄. Wemention the previous work on aliasing ontrol for objet-oriented languages [46℄ andthe use of roles in objet-oriented modeling [70℄ and database programming languages[35℄. We ompare our role analysis with shape types [32℄, graph types [64℄, path matrixanalysis [36℄, and parametri shape analysis [78℄. We briey relate our approah tosome other interproedural analyses and examine our work in the ontext of programveri�ation.7.1 Typestate SystemsA typestate system for statially verifying initialization properties of values was pro-posed in [84, 83℄. The type state heking was based on a linear two-pass typestateheking algorithm. In this typestate system, the state of an objet depends onlyon its initialization status. This system did not support aliasing of dynamially allo-ated strutures. Aliasing auses problems for typestate-based systems beause thedelared typestates of all aliases must hange whenever the state of the referred ob-jet hanges. Faed with the omplexity of aliasing, [84℄ resorted to a more ontrolledlanguage model based on relations. Requiring the relations to exist only between fullyinitialized objets enables veri�ation of initialization status of objets in the preseneof dynamially growing strutures. However, this solution is entirely inadequate forthe properties whih our role system veri�es. Our goal is to verify appliation-spei�properties of objets, and not objet initialization. Di�erent objets stored in dynam-ially growing data strutures have di�erent appliation-spei� properties, whih oursystem aptures as di�erent roles. When objet's properties hange, our system ver-i�es that the hange is onsistent with all relations in whih the objet partiipates.Our tehnique is appliable regardless of whether the relations between objets areimplemented as pointer �elds of reords or in some other way. The data-ow analysis[76℄ performs veri�ation of onstraints on relations and sets that implement dynamistrutures, but it does not perform instantiation operation like [78℄ and our role anal-79

www.manaraa.com

ysis, whih leads to the loss of preision when analyzing destrutive updates to datastrutures.More reently proposed typestate approahes [20, 88, 82, 19℄ use linear types tosupport state hanges of dynamially alloated objets. The goal of these systemsis to enfore safety properties of low-level ode, in partiular memory management.This is in ontrast with our system whih aims at verifying higher-level onstraintsin a language with a garbage olleted heap memory model. The apability alulus[19℄ allows traking the aliasing of memory regions by doing a form of ompile-timereferene ounting, but does not trak aliasing properties of individual objets. Aliastypes [82℄ represent preisely the aliasing of individual objets referened by loalvariables, but do not support reursive data strutures. Reursive alias types [88℄ al-low spei�ation of reursive data strutures as unfolding of basi elaboration steps.This allows desriptions of tree-like data strutures with parent pointers, but doesnot permit approximating arbitrary data strutures. This property of reursive aliastypes is shared with shape types [32℄ and graph types [54℄ disussed below. Anotherdi�erene ompared to our work is that these type systems present only a type hek-ing, and not a type inferene algorithm, whereas our analysis performs role infereneinside eah proedure. The appliation of these type systems to an imperative pro-gramming language Vault is presented in [20℄. Beause it is based on alias types andapability alulus, Vault's type system annot approximate arbitrary data stru-tures. The type system of Vault traks run-time resoures using unique keys. Tosimplify the type heking, Vault requires the equality of sets of keys at eah programpoint. This is in ontrast to prediative data-ow analyses suh as role analysis, whihtrak the sets of possible aliasing relationships at eah program point. Our approahmakes the results of the analysis less sensitive to semanti preserving rearrangementsof statements in the program.Like [91, 92℄, our role analysis performs non-loal inferene of program propertiesinluding the synthesis of loop invariants. The di�erene is that [91, 92℄ fous on lin-ear onstraints between integers and handle reursive data strutures onservatively,whereas we do not handle integer arithmeti but have a more preise representationof the heap that aptures the onstraints between objets partiipating in multipledata strutures.7.2 Roles in Objet-Oriented ProgrammingIt is widely reognized that onventional mehanisms in objet-oriented programminglanguages do not provide suÆient ontrol over objet aliasing. As a result, it is notpossible to prevent representation exposure [21℄ for linked data strutures. As someprevious systems, our roles an be used to avoid representation exposure, even thoughthis is not the only purpose of roles.Islands [46℄ were designed to help reasoning about objet-oriented programs. Anisland is a set of objets dominated by a bridge objet in the graph representing theheap. To keep trak of aliasing, [46℄ introdues unique and free variables with refereneounts zero and one, respetively. It also de�nes a destrutive read operation whih80

www.manaraa.com

an be used to pass free objets into proedures. Roles an also be used to enforethe invariant that an objet dominates a set of objets reahable along a given set of�elds by speifying slot onstraints that prevent aliases from objets outside the datastruture. Our slot onstraints substantially generalize unique and free variables. Ourrole analysis uses preise shape analysis tehniques, whih is in sharp ontrast withpurely syntati rules of [46℄.Balloon types [4℄ is another system that supports enapsulation. It requires min-imal program annotations. The enapsulation in balloon types is enfored usingabstrat interpretation. The analysis representation reords reahability status be-tween objets referened by variables and relationship of these objets with lustersof objets. In most ases our role analysis is more preise than [4℄ beause we trakthe aliasing properties of objets in reursive data strutures, and not only propertiesof paths between objets.Ownership types [14, 66℄ introdue the notion of objet ownership to preventrepresentation exposure. In ontrast to the type system [14℄ where the owner of anobjet is �xed, our role analysis allows the objets to hange the data struture.Furthermore, an objet in our system an be simultaneously a member of multipledata strutures, and the role analysis veri�es the movements of objets spei�ed inproedure interfaes.The objet-oriented ommunity has also beome aware of the bene�ts of the sys-tems where the lass of an objet hanges over the ourse of the omputation. Predi-ate lasses [11℄ desribe objets whose lass depends on values of arbitrary prediates.The system [11℄ omputes the values of prediates at run-time and does not attemptto statially infer values of these prediates, leaving to the user even the responsibilityof ensuring the disjointness of prediates for inomparable lasses. One of the featuresof prediate lasses is a dynami dispath based on the urrent lass of the objet.In ontrast, we are proposing a a seleted family of heap onstraints and a stati roleanalysis that keeps trak of these onstraints. Our role system does not have dynamidispath. Instead, the delared roles of parameters de�ne a preondition on a proe-dure all. This preondition hanges the operations appliable for an objet based onthe statially omputable information about the dynami state of the objet. Finally,[11℄ does not attempt to de�ne the state of an objet based on objet's aliases, whihis the entral idea of our approah. Even with the great freedom gained by giving upthe stati heking of lasses, systems like [11℄ annot verify invariants expressed withour slot onstraints; this would in general require adding additional instrumentation�elds that trak the inverse referenes.Dynami objet re-lassi�ation [26℄ presents a system loser to the onventionallass-based languages, with method invoation implemented through double dynamidispath. The proposal [26℄ does not statially analyze heap onstraints. The work[93℄ desribes a system inspired by a knowledge based reasoning system. The objetre-lassi�ation in [93℄ is also implemented by the run-time system. Other approahespropose using design patterns to overome the absene of language support for dy-namially hanging lasses [33, 29, 40, 86℄.The term \role" as used in objet-oriented modeling and objet-oriented databaseommunities is di�erent from our onept of roles. A role of an objet in these systems81

www.manaraa.com

does not apture objet's aliasing properties and other heap onstraints. In [70℄, roledenotes the purpose of an objet in a ollaboration [86℄ or a design pattern. Ouronept of roles aptures the assoiations between objets in a pattern by speifyingreferenes that originate or terminate at that objet. As in our system, the role of anobjet in [70℄ hanges over time, and an objets an play multiple roles simultaneously,whih orresponds to our partial roles. Our role system ensures the onformane ofthese design onepts with the atual implementation, improving the reliability ofthe appliation. In the database programming language Fibonai [35, 3℄ eah objetplays multiple roles simultaneously. The interfae of an objet depends on the rolethrough whih the objet is aessed. This is in ontrast to our role system where therole is a strutural property of an objet. As in most other database implementations,the system [3℄ heks the inlusion and ardinality onstraints on assoiations at run-time, unlike our stati analysis.7.3 Shape AnalysisThe preision of our role analysis for traking referenes between heap objets islosest to the preision of the shape analysis and veri�ation tehniques suh as [78,32, 54, 36℄. Whereas these systems fous on analyzing a single data struture, ourgoal is to analyze interations between multiple data strutures. This is reeted inour hoie of the properties to analyze. In partiular, the slot onstraints traked byour role analysis are a natural generalization of the sharing prediate in [78℄ and anbe used both to re�ne the desriptions of data struture nodes and to speify themembership of objets in multiple data strutures.Shape Types [32℄ is a system for ensuring that the program heap onforms to aontext-free graph grammar [27, 73℄. As a graph desription formalism, ontext-freegraph grammars are inomparable to roles. On the one hand, graph grammars an-not desribe an approximation of sparse matries or speify partiipation of objetsin multiple data strutures. On the other hand, the nonparametrized role systempresented in this thesis does not inlude onstraints suh as \a node must have a selfloop". We ould express suh onstraints using roles parametrized by objets. Theproblem of temporary violations of heap invariants is irumvented in [32℄ by usinghigh-level graph rewrite rules alled reations [30℄ as part of the implementation lan-guage. The model [32℄ does not support nested reations on the same data strutureor proedure alls from reations. In ontrast, the model of onstage and o�stagenodes an be diretly applied to a Java-like language, and gives more exibility tothe programmer beause roles an be violated in one part of data struture whileinvoking a proedure on disjoint part of the same data struture. There is no sup-port for proedure spei�ations in [32℄. While simple proedures might be desribedpreisely as reations, for larger proedures it is neessary to use approximations tokeep proedure summaries onise. Our system ahieves this goal by using e�ets asnodeterministi proedure spei�ations that enable ompositional interproeduralanalysis.Graph types and the pointer assertion logi [54, 52, 64℄ are heap invariant desrip-82

www.manaraa.com

tion languages based on monadi seond-order logi [85, 17, 55℄. In these systems,eah graph type data struture must be represented as a spanning tree with addi-tional pointer �elds [64℄ onstrained to denote exatly one target node. If a datastruture is expressible in this way, the system [64℄ an verify strong properties aboutit, an example is manipulation of a threaded tree. Beause of onstraints on pointer�elds, however, it is not possible to approximate data strutures suh as trees with apointer to the last aessed leaf, skip lists, or sparse matries. This restrition alsomakes it impossible to desribe objets that move between data strutures while beingmembers of multiple data strutures simultaneously. The moving objets annot bemade part of any bakbone beause their membership in data strutures hanges overtime. The veri�ation of programs in [64℄ is based on loop invariants. This makes thetehnique naturally modular and hene no speial mehanism is needed for interpro-edural analysis. Beause the logi is seond order, the e�ets of the proedure anbe spei�ed by referring to the sets of nodes a�eted by the proedure. The problemwith this approah is the omplexity of loop invariants that desribe the intermediatereferening relationships. In ontrast, our role analysis uses �xpoint omputation toe�etively infer loop invariants in the form of sets of role graphs and uses proeduresas a unit of a ompositional interproedural analysis.Like shape analysis tehniques [12, 36, 77, 78℄, we have adopted a onstraint-basedapproah for desribing the heap. The onstraint based approah allows us to handlea wider range of data strutures while potentially giving up some preision.The path matrix approahes [37, 36℄ have been used to implement eÆient in-terproedural analyses that infer one level of referening relationships, but are notsuÆiently preise to trak must aliases of heap objets for programs with destrutiveupdates of more omplex data strutures.The ADDS data struture desription language [49℄ uses delarations of uniquepointers and independent data struture dimensions to ommuniate data struturesinvariants. Later systems [50, 45℄ replae these onstraints with reahability axioms.None of these systems has a onept of a role whih depends on aliasing of an objetfrom other objets. These systems use sound tehniques to apply the data strutureinvariants for parallelization and general dependene testing but do not verify thatthe data struture invariants are preserved by destrutive updates of data strutures[48℄.The use of the instantiation relation in role analysis is analogous to the material-ization operation of [77, 78℄. The shape analysis [77, 78℄ uses abstrat interpretation[18℄ to ompute the invariants that the program satis�es at eah program point. Thevalues of invariants are stored as 3-valued models for the user-supplied instrumen-tation prediates. In ontrast, our analysis representation is designed to verify apartiular role programming model with onstage and o�stage nodes. Role graphs use\may" interpretation of edges for o�stage nodes and \must" interpretation of edgesadjaent to onstage nodes. The abstration relation is based on graph homomorphismand it is not neessarily a funtion, so there is no unique best abstrat transformeras in the abstrat interpretation frameworks. Our role analysis an thus reate thesummary nodes with di�erent reahability prediates on demand, depending on thebehavior of the program. Next, the possibility of having multiple role assignments83

www.manaraa.com

with stati analysis based on the instrumented semantis allows us to apture ertainproperties of objets that depend not only on the urrent state of the heap but alsoon the omputation history. Reahability properties in our role analysis are derivedfrom the role graph instead of being expliitly stored as instrumentation prediates.The advantage of our approah is that it naturally handles a lass of reahabilityprediates, without requiring prediate update formulae. Our approah thus avoidsthe danger of a developer supplying inorret prediate update formulae and therebyompromising the soundness of the analysis. A disadvantage of our approah is thatit does not give must reahability information for paths ontaining several types of�elds where nodes have multiple aliases from those �elds. The reason why we anreover reahability for e.g. tree-like data strutures is that the slot onstraint in arole whih labels a summary node guarantees the existene of the parent for eahnode in the path. Our role analysis handles ayliity by using roles to store theayliity assumptions for nodes in reursive data strutures. Ayliity assumptionsare instantiated using the the split operation. Our split operation ahieves a similargoal to the fous operation of [78℄. However, the generi fous algorithm of [60℄ annothandle the reahability prediate whih is needed for our split operation. This is be-ause it onservatively refuses to fous on edges between two summary nodes to avoidgenerating an in�nite number of strutures. Rather than requiring de�nite values forreahability prediate, our role analysis splits aording to reahability properties inthe abstrat role graph, whih illustrates the exibility of the homomorphism-basedabstration relation.Type inferene algorithms for dynamially typed funtional languages [2, 10℄ havethe ability to statially approximate the values of types in higher order languages.These systems usually work with purely funtional subsets of funtional languagesand do not onsider the issues of aliasing.7.4 Interproedural AnalysesA preise interproedural analysis [72℄ extends the shape analysis tehniques to treatativation reords as dynamially alloated strutures. The approah also e�etivelysynthesizes an appliation-spei� set of ontexts. Our approah di�ers in that ituses a less preise but more salable treatment of proedures. It also uses a ompo-sitional approah that analyzes eah proedure one to verify that it onforms to itsspei�ation.Interproedural ontext-sensitive pointer analyses [90, 38, 13℄ typially omputepoints-to relationships by ahing generated ontexts and using �xpoint omputationinside strongly onneted omponents of the all graph. Beause our analysis traksmore detailed information about the heap, we have hosen to make it ompositionalat the level of proedures. Our analysis ahieves ompositionality using proeduree�ets, whih are also useful doumentation for the proedure. Like [92℄ our interpro-edural analysis an apply both may and must e�ets, but our ontexts are generalgraphs with summary nodes and not trees.The system [43℄ introdues an annotation language for optimizing libraries. The84

www.manaraa.com

language desribes proedure interfaes whih enable optimization of programs thatuse matrix operations. The supplied funtion annotations are not veri�ed for theonformane with proedure implementations. In ontrast, our goal is to analyzelinked data strutures to verify heap invariants; it is therefore essential that our roleanalysis uses sound tehniques for both e�et veri�ation and e�et instantiation.Our e�ets are more spei� and preise than e�ets in [53℄; as a result they arenot ommutative. Both veri�ation and instantiation of our e�ets require spei�tehniques that preisely keep trak of the orrespondene between the initial heapof a proedure and the heap at eah program point. Our e�et appliation rulesimplement a form of e�et masking. If there are no write e�ets with the NEW asa target and the soure other than NEW, the role graphs in the aller will not bea�eted.7.5 Program Veri�ationWe an view our role analysis as one omponent of a general program veri�ationsystem. The role analysis onservatively attempts to establish a spei� lass of heapinvariants, but does not trak other program properties. Verifying data strutureinvariants is important beause the knowledge of these invariants is ruial for rea-soning about the behavior of programs with dynamially alloated data strutures,whih is generally onsidered diÆult. The diÆulty of reasoning with dynamiallyalloated data strutures is indiated by some existing systems that verify propertiesof interfaes but lak automati veri�ation of onformane between interfae and im-plementation [42℄, and systems that give up soundness [28, 21℄. Advanes in reasoningabout linked data strutures [71, 51℄ might be a useful starting point for veri�ationtools, although eÆient manipulation of properties in veri�ation tools results in dif-ferent representation requirements than manual reasoning. A ombination of modelheking [47℄ and sound automati model extration [5℄ might be an appropriate im-plementation tehnique for verifying program properties, but the appliability of thisapproah for verifying heap invariants remains to be proven.

85

www.manaraa.com

86

www.manaraa.com

Chapter 8ConlusionWe proposed two key ideas: aliasing relationships should determine, in large part,the state of eah objet, and the type system should use the resulting objet states asits fundamental abstration for desribing proedure interfaes and objet referen-ing relationships. We presented a role system that realizes these two key ideas, anddesribed an analysis algorithm that an verify that the program orretly respetsthe onstraints of this role system. The result is that programmers an use roles fora variety of purposes: to ensure the orretness of extended proedure interfaes thattake the roles of parameters into aount, to verify important data struture onsis-teny properties, to express how proedures move objets between data strutures,and to hek that the program orretly implements orrelated relationships betweenthe states of multiple objets. We therefore expet roles to improve the reliabilityof the program and its transpareny to developers and maintainers. By ensuringthat the program onforms to the design onstraints expressed in role de�nitions,role analysis makes design information available to the ompilation framework. Thisenables a range of high-level program transformations suh as automati distribution,parallelization, and memory management.

87

www.manaraa.com

88

www.manaraa.com

Appendix ADeidability Properties of RolesThis hapter presents some further results about properties of roles. The �rst se-tion proves deidability of the satis�ability problem for roles with only �eld and slotonstraints. The seond setion proves undeidability of the impliation problem forroles.A.1 Roles with Field and Slot ConstraintsIn this setion we losely examine more losely properties of roles de�ned using solely�eld and slot onstraints. We ignore identity and ayliity onstraints in this andthe following setion.We show that we an use more general form of slot onstraints without hangingthe expressive power of roles. We then show how the generalized slot onstraintsan entirely replae the �eld onstraints, whih means that these onstraints are notstritly neessary one the full set of role de�nitions is given. Finally we show deid-ability of the satisfation problem for a set of roles ontaining only slot onstraints.A.1.1 Forms of Slot ConstraintsThe partiular form of our slot onstraints introdued in Setion 2.1.2 may seem some-what arbitrary. In this setion we introdue a more general form of slot onstraintsand show that it an be redued to our original role onstraints. This observationgives insight into the nature of slot onstraints and is used in further setions.De�nition 49 A generalized slot onstraint for role r, denoted gslot(r), is a list1; : : : ; n of inoming on�gurations. Eah inoming on�guration s is a list ofpairs hrs1; fs1i; : : : ; hrsqs; fsqsi 2 R � F where qs is the length of s.By abuse of notation, we write hrj; fji 2 s if hrj; fji is a member of the list s wheres represents the inoming on�guration.In addition to the role assignment � : nodes(H)! R, we introdue an inomingon�guration assignment � : nodes(H) ! N . For eah node o, the inoming on�g-uration assignment selets an inoming on�guration �(o) of the the role �(o). Theloal onsisteny is then de�ned as follows.89

www.manaraa.com

De�nition 50 loallyConsistent(o;H; �; �) holds for generalized roles i� the follow-ing onditions are met. Let r = �(o).1) For every �eld f 2 F and ho; f; o0i 2 H, �(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 Hg be the set of all aliases ofnode o and s = �(o). Then k = qs and there exists a permutation p of the setf1; : : : ; kg suh that h�(opi); fpii = hrsi; fsii for 1 � i � k where hrsi; fsii is thei-the element of the list in inoming on�guration s.We say that the pair h�; �i of role assignment and inoming on�guration assignmentis valid for H i� loallyConsistent prediate holds for all nodes o 2 nodes(H); theheap H is onsistent if there exists a valid pair h�; �i. A nonempty heap onsistentwith a given set of role de�nition is alled a model for the role de�nitions.A.1.2 Equivalene of Original and Generalized SlotsOur original slot onstraints sloti(r) for 1 � i � k where k = slotno(r) an berepresented as generalized slot onstraints with a list of all inoming on�gurations = hr1; f1i; : : : ; hrk; fki for hri; fii 2 sloti(r), 1 � i � k. This representation is adiret onsequene of De�nitions 50 and 2.Conversely, given a set of role de�nitions with generalized slots, we an onstruta set of role de�nitions with original slots as follows. Introdue a role r= for eahinoming on�guration of role r with generalized slot onstraint. Let origRoles(r)denote the set of new roles r= for all inoming on�gurations of r. De�ne �eld andslot onstraints for r= as follows:�eldf(r=) = [forigRoles(r0) j r0 2 �eldf(r)gsloti(r=) = fhri=0; fii j 0 is an inoming on�guration of rigwhere = hr1; f1i; : : : ; hrk; fki. Let role assignment � assign roles with general-ized slots to objets and � be the inoming on�guration assignment suh thatloallyConsistent prediate holds for all heap objets. De�ne the assignment of originalroles by �0(o) = �(o)=�(o)Then loallyConsistent prediate holds for the �0 assigning original roles to objets.We will use the generalized role onstraints to establish the deidability of thesatis�ability problem. We �rst show how to eliminate �eld onstraints.A.1.3 Eliminating Field ConstraintsIn this setion we argue that the �eld onstraints are mostly subsumed by slot on-straints if the entire set of role de�nitions is given. The onstraint r0 =2 �eldf (r) anbe spei�ed as hr; fi =2 sloti(r0) for all slots i in the original slot onstraints. In thegeneralized slot onstraints this onditions is spei�ed by making sure that hr; fi isnot a member of any of the inoming on�gurations of role r0. In order to allow this90

www.manaraa.com

onstrution to work for null referenes, we introdue multislot delaration for nullRrole by de�ning hr; fi 2 multislots(nullR) i� nullR 2 �eldf (r).After this transformation, the �eld delarations will be satis�ed whenever (gener-alized) slot onstraints and nullR multislot onstraint are satis�ed. In the sequel wetherefore ignore the �eld onstraints.A.1.4 Deidability of the Satis�ability ProblemIn this setion we show that is is deidable to determine if a given set of role de�nitions(ontaining only �eld and slot onstraints) has a model. We show how to redue thisquestion to the solvability of an integer linear programming problem.Assume a set of role de�nitions for roles R = fr1; : : : ; rng. Let H be a onreteheap, � a role assignment and � an inoming on�guration assignment. De�ne thefollowing nonnegative integer variables. For every i, where 1 � i � n, let xi be thenumber of nodes with role ri:xi = jfo 2 nodes(H) j �(o) = rigjLet yjs be the number of nodes with role �(rj) for whih � selets the inomingon�guration s: yjs = jfo 2 nodes(H) j �(o) = rj; �(o) = sgjWe also introdue the values nfi denoting the number of null referenes from objetswith role ri along the �eld f :nfi = jfho; f; nulli 2 H j �(o) = rigjAssume that loallyConsistent prediate holds for all objets o 2 nodes(H). Bypartitioning the set of objets �rst by roles and then by inoming on�gurations ofeah role, we onlude that the following equations hold for 1 � j � n:qjXs=1 yjs = xj (A.1)Next, let us ount for eah role ri and eah �eld f 2 F , the number of f -referenesfrom objets in ��1 (ri). We assumed that eah objet has the �eld f , so ountingthe soure of these referenes yields xi. Out of these, nfi are null referenes, andthe remaining ones �ll the slots of objets with inoming on�gurations that ontainhri; fi. We onlude that for eah f 2 F and 1 � i � n the following linear equationholds: xi = nfi + Xhri;fi2s yjs (A.2)Finally, for all hri; fi =2 multislots(nullR), we havenfi = 0 (A.3)91

www.manaraa.com

We all equations A.1, A.2, and A.3 the harateristi equations of role onstraints.We onluded that harateristi equations hold for eah valid role and inomingon�guration assignment. We now argue that a nontrivial solution of these equationsimplies the existene of a heap H, the role assignment � and inoming on�gurationassignment � suh that loallyConsistent prediate is satis�ed for all objets of theheap.Assume that there is a nontrivial solution of the harateristi equations. Con-strut a heap H with N nodes where N = Pi=1 xi. Partition the nodes of the heapinto n lasses and assign �(o) = ri for nodes in lass i, suh that the de�nition ofxi is satis�ed for every i. This is possible by the hoie of N . Next, partition eahlass ��1 (ri) into disjoint sets, one set for eah inoming on�guration, and assign�(o) = s suh that the de�nitions of yjs are satis�ed. This is always possible beauseequation A.1 holds. Next, add edges to graph H so that slot onstraints are satis�ed.This an be done by a simple greedy algorithm whih adds one edge at a time so thatit does not violate any slot onstraints. This onstrution is guaranteed to sueedbeause of equation A.2. The ondition A.3 guarantees that the resulting graph nullreferenes will be present only for the �elds for whih they are allowed. The result isa heap H onsistent with the role de�nitions.The next theorem follows diretly from the previous argument and the deidabilityof the integer linear programming problem.Theorem 51 It is deidable to determine if there exists a model for a given set ofrole de�nitions.In addition to showing the deidability, the preeding argument also illustratesthat slot and �eld onstraints are insensitive to graph operations that swith thesoure of a referene from objet o1 to objet o2, as long as �(o1) = �(o2). Thisimplies that ertain heap properties are not expressible using slot and �eld onstraintsalone. In partiular, slot onstraints do not prevent yles, whih justi�es introduingthe ayliity onstraints into the role framework.A.2 Undeidability of Model InlusionIn this setion we explore the deidability of the question \is the set of models of oneset of role de�nitions S1 inluded in the set of models of another set of role de�nitionsS2". This appears to be a more diÆult problem than satis�ability of role de�nitions.Indeed, we proved in Setion A.1.4 that the satis�ability is deidable for a restritedlass of role de�nitions; in this setion we prove that the model inlusion problem isundeidable for ayli models.Our role spei�ations are interpreted with respet to graphs whih need not betrees and an even ontain yles. It an therefore be expeted that strong enoughproperties are undeidable for suh broad lass of models. A ommon tehnique toprove undeidability for problems on general graphs is to onsider the lass of graphsalled grids. 92

www.manaraa.com

We de�ne a grid as a labelled graph with edges x along the x-axis and edges yalong the y axis.De�nition 52 A grid m � n where m;n � 5 is any graph isomorphi to the graphwith nodes V = f1; : : : ; mg � f1; : : : ; ngand edges E = Er [Ed whereEx = fhhi; ji; x; hi+ j; jii j 1 � i � m� 1; 1 � j � ngEy = fhhi; ji; y; hi; j + 1ii j 1 � i � m; 1 � j � n� 1gThe idea is to redue the existene of a Turing mahine omputation history [81, 67℄to the problem on graphs onsidered. The rules for omputation history are loaland thus an be expressed using slots and �elds. However, it is not possible to useroles to diretly express the ondition that a graph is a grid. The problem is that theommutativity ondition o:x:y = o:y:x for grids annot be aptured using our roleonstraints, as the following reasoning shows.Assume that there are role de�nitions whih desribe the lass of grids. Sinegrids do not have any identities hf; gi, we may assume that these role de�nitionsdo not ontain identity delarations. Beause the number of roles and inomingon�gurations is �nite, there exists a suÆiently large grid E, a valid role assignment� and a valid inoming on�guration assignment � suh that for some i; j where2 < i < j, all of the following onditions hold:�(hi; 2i) = �(hj; 2i)�(hi; 3i) = �(hj; 3i)�(hi; 2i) = �(hj; 2i)�(hi; 2i) = �(hj; 2i)De�ne a new graph E 0 in the following way (see Figure A-1).E 0 = (E n fhhi; 2i; x; hi; 3ii; hhj; 2i; x; hj; 3iig)[fhhi; 2i; x; hj; 3ii; hhj; 2i; x; hi; 3iigWe laim that the new graph E 0 also satis�es the same role and inoming on�gurationassignment. To see this, observe that the �eld and slot onstraints remain satis�edbeause the new edges onnet nodes with same roles as in E, there are no identitiesin role de�nitions, and the graph remains ayli so ayliity onditions annot beviolated. But E 0 is not isomorphi to a grid, beause every isomorphism would haveto be identity funtion on node h1; 1i, and therefore also identity on all nodes h1; iifor i > 1. Next, sine y-edges in E 0 are the same as in E, the isomorphism wouldhave to be identity funtion on all nodes, and this is not possible due to the hangeperformed in the set of x-edges. We onlude there is no set of role de�nitions thataptures the lass of grids. 93

www.manaraa.com

1 2 2 3

4

4

7

5 5

5 5

6

6

8 8 9

x x x

x
x x

x
x x

x x x

y

y

y y y

y y

y

y

y y y

Figure A-1: A Grid after Role Preserving Modi�ationThe idea of our undeidability onstrution is to use one set of role de�nitions S1to approximate the grid up to the ommutativity ondition o:x:y = o:y:x as well asto enode the transitions of a Turing mahine. We then use the another set of rolede�nitions S2 to express the negation of the ommutativity ondition. The models ofS1 are not inluded in models of S2 if and only if there exists a model for S1 whih isnot a model of S2. Any suh model will have to be a grid beause it satis�es S1 butnot S2, and the roles of S1 will enode the aepting Turing mahine omputationhistory. Hene the question whether suh a model exists will be equivalent to theexistene of an aepting Turing mahine omputation history and the undeidabilityof model inlusion will follow from the undeidability of the halting problem.Let us �rst onsider how S1 and S2 de�ne the grid used to enode the omputationhistories. Without the loss of generality, we restrit ourselves to models that areonneted graphs. We de�ne S1 to be a re�nement of the de�nition for a sparsematrix from Example 3, Figure 2-1. From properties in Setion 2.3 we onlude thatthe onneted models of E are graphs for whih there exist m;n � 3 suh that:1. there is exatly one node A1, one node A3, one node A7 and one node A9;2. there are m� 2 nodes A2 (by the hoie of m);3. there are m � 2 nodes A8 beause the ayli lists along y establish bijetionwith A2 nodes;4. there are n� 2 nodes A4 (by the hoie of n);5. there are n � 2 nodes A6 beause the ayli lists along x establish bijetionwith A4 nodes; 94

www.manaraa.com

6. there are at least max(m � 2; n � 2) nodes A5 (but not neessarily more thanthat).
P Q

R
T

S

x

x

y y

Figure A-2: Roles that Fore Violation of the Commutativity ConditionThe idea of role de�nitions S2 is that if a graph satisfying S1 is not a grid, thenthere must exist a node o suh that o:x:y 6= o:y:x, whih means that o:x:y and o:y:xan be assigned distint roles. We onstrut S2 to require the existene of �ve distintobjets o, o:x, o:y, o:x:y and o:y:x with with �ve distint roles P , Q, R, and T (seeFigure A-2). We require Q to be referened from P:x, R to be referened from P:y,T from Q:y and S from R:x. In addition to these �ve roles, we inlude the roles thatensure that are assigned to the remaining nodes of a graph. We onstrut these rolesto ensure that every model of S2 ontains an objet of P role, relying on Property 12.Finally, we explain how to enode the existene of an aepting Turing mahineomputation history in the set of role de�nitions S1. Let M be a Turing mahine andw any input. We use the fat that the omputation history of M on input w an berepresented as a matrix, and represent the matrix as a grid. Eah row of the matrixrepresents on�guration of the Turing mahine enoded as a sequene of symbols.Beause all Turing mahine transitions hange the tape loally, there is a �nite setW1; : : : ;Wk of 3�2 tiles of symbols that haraterize the matrix in the following way.We all a 3 � 2 window in a the matrix aeptable if it mathes a tile. We use thefat [81℄ that a matrix represents a omputation history of M i�every 3� 2 window in the matrix is aeptable (A.4)The ondition A.4 an be split into six onditions C11; C12; C13; C21; C22; C23 whereCij ensures that every 3 � 2 window is aeptable if it starts at (i1; j1) where i1 � i(mod 3) and j1 � j (mod 3). Let eah tile Wt onsist of symbols a11t , a12t , a13t , a21t ,a22t , a23t .The set of role de�nitions S1 is similar to roles in Example 3 exept that it splitsthe role A5 into multiple roles. Eah new role of S1 is a sixtuple of positions (ts; is; js),where 1 � s � 6, suh that ai1j1t1 = ai2j2t2 = : : : = ai6j6t6 . Eah position (ts; is; js) in therole sixtuple ensures that one of the onditions Cij is satis�ed where s = 3(i� 1)+ j,using the slot onstraints. Along the x �eld, if j > 1, a role with position (t; i; j)95

www.manaraa.com

as k-th projetion an have only aliases from roles with position (t; i; j � 1) as k-thprojetion. If j = 1, the aliases an be from roles with (t0; i; 3) as the k-th projetion.Analogous slot onstraints are de�ned for y �elds.An aepting omputation history of the Turing mahine M exists i� there existsa matrix where all 3� 2 windows are valid whih in turn holds i� there exists a gridwhih satis�ed the onstraints given by role de�nitions S1. A graph whih satis�esrole de�nitions S1 is a grid i� it does not satisfy the role de�nitions S2; suh graphexists i� the models of S1 are not inluded in models of S2. Hene an aeptingomputation history of the Turing mahine M exists i� the models of S1 are notinluded in the models of S2. Sine the �rst question is undeidable, so is the modelinlusion question.

96

www.manaraa.com

Bibliography[1℄ Alexander Aiken. Introdution to set onstraint-based program analysis. Sieneof Computer Programming, 35:79{111, 1999.[2℄ Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing withonditional types. In Proeedings of the 21st Annual ACM Symposium on thePriniples of Programming Languages, pages 163{173, New York, NY, 1994.[3℄ A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An introdution to thedatabase programming language Fibonai. Journal of Very Large Data Bases,4(3), 1995.[4℄ Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data types.In Proeedings of the 11th European Conferene on Objet-Oriented Program-ming, 1997.[5℄ Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Au-tomati prediate abstration of C programs. In Proeedings of the SIGPLAN'01 Conferene on Programming Language Design and Implementation, 2001.[6℄ Barendsen and J. E. W. Smetsers. Conventional and uniqueness typing in graphrewrite systems. In Proeedings of the 13th Conferene on the Foundationsof Software Tehnology and Theoretial Computer Siene 1993, Bombay, NewYork, NY, 1993. Springer-Verlag.[7℄ Mihael Benedikt, Thomas Reps, and Mooly Sagiv. A deidable logi for linkeddata strutures. In Proeedings of the 13th European Symposium on Program-ming, 1999.[8℄ Egon Boerger, Erih Graedel, and Yuri Gurevih. The Classial Deision Prob-lem. Springer-Verlag, 1997.[9℄ Niolas Bourbaki. Theory of Sets. Paris, Hermann, 1968.[10℄ R. Cartwright and M. Fagan. Soft typing. In Proeedings of the ACM SIGPLAN'91 Conferene on Programming Language Design and Implementation (PLDI),number 6 in 26, pages 278{292, 1991.97

www.manaraa.com

[11℄ Craig Chambers. Prediate lasses. In Osar M. Nierstrasz, editor, Proeedingsof the European Conferene on Objet-Oriented Programming (ECOOP), volume707, pages 268{296, Berlin, Heidelberg, New York, Tokyo, 1993. Springer-Verlag.[12℄ David R. Chase, Mark Wegman, and F. Kenneth Zadek. Analysis of pointersand strutures. In Proeedings of the SIGPLAN '90 Conferene on ProgrammingLanguage Design and Implementation, 1990.[13℄ Ramkrishna Chatterjee, Barbara G. Ryder, and William Landi. Relevant ontextinferene. In Proeedings of the 26th Annual ACM Symposium on the Priniplesof Programming Languages, pages 133{146, 1999.[14℄ David G. Clarke, John M. Potter, and James Noble. Ownership types for ex-ible alias protetion. In Proeedings of the 13th Annual Conferene on Objet-Oriented Programming Systems, Languages and Appliations, 1998.[15℄ H. Comon, M. Dauhet, R. Gilleron, F. Jaquemard, D. Lugiez, S. Ti-son, and M. Tommasi. Tree automata tehniques and appliations (tata).http://www.grappa.univ-lille3.fr/tata, 1997.[16℄ James C. Corbett. Using shape analysis to redue �nite-state models of onur-rent java programs. Software Engineering and Methodology, 9(1):51{93, 2000.[17℄ Bruno Courelle. The expression of graph properties and graph transformationsin monadi seond-order logi. In Handbook of graph grammars and omputing bygraph transformations, Vol. 1 : Foundations, hapter 5. World Sienti�, 1997.[18℄ Patrik Cousot and Radhia Cousot. Abstrat interpretation: a uni�ed lattiemodel for stati analysis of programs by onstrution or approximation of �x-points. In Proeedings of the 4th Annual ACM Symposium on the Priniples ofProgramming Languages, pages 238{252, 1977.[19℄ Karl Crary, David Walker, and Greg Morrisett. Typed memory management ina alulus of apabilities. In Proeedings of the 26th Annual ACM Symposiumon the Priniples of Programming Languages, 1999.[20℄ Robert DeLine and Manuel Fahndrih. Enforing high-level protools in low-level software. In Proeedings of the SIGPLAN '01 Conferene on ProgrammingLanguage Design and Implementation, 2001.[21℄ David Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extendedstati heking. Tehnial Report 159, COMPAQ Systems Researh Center, 1998.[22℄ David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with repexposure. Tehnial report, DIGITAL Systems Researh Center, 1998.[23℄ Alain Deutsh. Interproedural may-alias analysis for pointers: beyond k-limiting. ACM SIGPLAN Noties, 29(6):230{241, 1994.98

www.manaraa.com

[24℄ Amer Diwan, Kathryn MKinley, and J. Elliot B. Moss. Type-based alias anal-ysis. In Proeedings of the SIGPLAN '98 Conferene on Programming LanguageDesign and Implementation, 1998.[25℄ Nurit Dor, Mihael Rodeh, and Mooly Sagiv. Cheking leanness in linked lists.In Proeedings of the 7th International Stati Analysis Symposium, 2000.[26℄ S. Drossopoulou, F. Damiani, M. Dezani-Cianaglini, and P. Giannini. Fikle:Dynami objet re-lassi�ation. In ECOOP'01, LNCS. Springer, 2001. Toappear.[27℄ Joost Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,editors, Handbook of Formal Languages. Vol. III: Beyond Words, hapter 3, pages125{213. Springer, 1997.[28℄ David Evans. Stati detetion of dynami memory errors. In Proeedings of theSIGPLAN '96 Conferene on Programming Language Design and Implementa-tion, 1996.[29℄ Martin Fowler. Dealing with roles.http://www.martinfowler.om/apsupp/roles.pdf, July 1997.[30℄ P. Fradet and D. Le Metayer. Strutured gamma. Siene of Computer Pro-gramming, SCP, 31(2-3), pp. 263-289, 1998.[31℄ Pasal Fradet, Ronan Gaugne, and Daniel Le Metayer. An inferene algorithmfor the stati veri�ation of pointer manipulation. Tehnial Report 980, IRISA,1996.[32℄ Pasal Fradet and Daniel Le Metayer. Shape types. In Proeedings of the 24thAnnual ACM Symposium on the Priniples of Programming Languages, 1997.[33℄ Erih Gamma, Rihard Helm, Ralph Johnson, and John Vlisside. Design Pat-terns. Elements of Reusable Objet-Oriented Software. Addison-Wesley, Reading,Mass., 1994.[34℄ Feren Geseg and Magnus Steinby. Tree languages. In G. Rozenberg and A. Salo-maa, editors, Handbook of Formal Languages. Vol. III: Beyond Words, hapter 1.Springer, 1997.[35℄ Giorgio Ghelli and Debora Palmerini. Foundations for extensible objets withroles. In Workshop on Foundations of Objet-Oriented Languages, Paris, July1999, 1999.[36℄ Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG, or a yli graph? In Pro-eedings of the 23rd Annual ACM Symposium on the Priniples of ProgrammingLanguages, St. Petersburg Beah, FL, 1996.99

www.manaraa.com

[37℄ Rakesh Ghiya and Laurie J. Hendren. Connetion analysis: A pratial interpro-edural heap analysis for C. In Proeedings of the 8th Workshop on Languagesand Compilers for Parallel Computing, 1995.[38℄ Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In Pro-eedings of the 25th Annual ACM Symposium on the Priniples of ProgrammingLanguages, 1998.[39℄ James Gosling, Bill Joy, Guy Steele, and Gilad Braha. The Java LanguageSpei�ation. Sun Mirosystems, In., 2001.[40℄ Georg Gottlob, Mihael Shre, and Brigitte Roek. Extending objet-orientedsystems with roles. ACM Transations on Information Systems, 14(3), 1994.[41℄ Carl A. Gunter and John C. Mithell, editors. Theoretial Aspets of Objet-Oriented Programming. The MIT Press, Cambridge, Mass., 1994.[42℄ John Guttag and James Horning. Larh: Languages and Tools for Formal Spe-i�ation. Springer-Verlag, 1993.[43℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing softwarelibraries. In Seond Conferene on Domain Spei� Languages, 1999.[44℄ David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynami Logi. The MIT Press,Cambridge, Mass., 2000.[45℄ Laurie J. Hendren, Joseph Hummel, and Alexandru Niolau. A general datadependene test for dynami, pointer-based data strutures. In Proeedings ofthe SIGPLAN '94 Conferene on Programming Language Design and Implemen-tation, 1994.[46℄ John Hogg. Islands: Aliasing protetion in objet-oriented languages. In Pro-eedings of the 5th Annual Conferene on Objet-Oriented Programming Systems,Languages and Appliations, 1991.[47℄ G. J. Holzmann. The model heker spin. IEEE Trans. on Software Engineering,23(5):279{295, May 1997. Speial issue on Formal Methods in Software Pratie.[48℄ Joseph Hummel. Data Dependene Testing in the Presene of Pointers andPointer-Based Data Strutures. PhD thesis, Dept. of Computer Siene, Univ.of California at Irvine, 1998.[49℄ Joseph Hummel, Laurie J. Hendren, and Alexandru Niolau. Abstrat desrip-tion of pointer data strutures: An approah for improving the analysis andoptimization of imperative programs. ACM Letters on Programming Languagesand Systems, 1(3), September 1993.100

www.manaraa.com

[50℄ Joseph Hummel, Laurie J. Hendren, and Alexandru Niolau. A language foronveying the aliasing properties of dynami, pointer-based data strutures. InProeedings of the 8th International Parallel Proessing Symposium, Canun,Mexio, April 26{29 1994.[51℄ Samin Ishtiaq and Peter W. O'Hearn. Bi as an assertion language for mutabledata strutures. In Proeedings of the 28th Annual ACM Symposium on thePriniples of Programming Languages, 2001.[52℄ Jaob J. Jensen, Mihael E. Joergensen, Nils Klarlund, and Mihael I.Shwartzbah. Automati veri�ation of pointer programs using monadi seondorder logi. In Proeedings of the SIGPLAN '97 Conferene on ProgrammingLanguage Design and Implementation, Las Vegas, NV, 1997.[53℄ Pierre Jouvelot and David K. Gi�ord. Algebrai reonstrution of types ande�ets. In Proeedings of the 18th Annual ACM Symposium on the Priniples ofProgramming Languages, 1991.[54℄ Nils Klarlund and Mihael I. Shwartzbah. Graph types. In Proeedings ofthe 20th Annual ACM Symposium on the Priniples of Programming Languages,Charleston, SC, 1993.[55℄ Nils Klarlund and Mihael I. Shwartzbah. Graphs and deidable transdutionsbased on edge onstraints. In Pro. 19th Colloquium on Trees and Algebra inProgramming, LNCS, number 787 in LNCS, 1994.[56℄ Naoki Kobayashi. Quasi-linear types. In Proeedings of the 26th Annual ACMSymposium on the Priniples of Programming Languages, 1999.[57℄ Viktor Kunak, Patrik Lam, and Martin Rinard. A language for role spei�-ations. In Proeedings of the 14th Workshop on Languages and Compilers forParallel Computing, 2001.[58℄ Viktor Kunak, Patrik Lam, and Martin Rinard. Roles are really great! Teh-nial Report 822, Laboratory for Computer Siene, Massahusetts Institute ofTehnology, http://www.mit.edu/~vkunak/papers/, 2001.[59℄ Christopher Lapkowski and Laurie J. Hendren. Extended SSA numbering: In-troduing SSA properties to languages with multi-level pointers. In Proeedingsof the 7th International Conferene on Compiler Constrution. Springer-VerlagLNCS, Marh 1998.[60℄ Tal Lev-Ami. TVLA: A framework for kleene based logi stati analyses. Master'sthesis, Tel-Aviv University, Israel, 2000.[61℄ Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Com-putation. Prentie-Hall, 1981. 101

www.manaraa.com

[62℄ B. Liskov and J. M. Wing. A new de�nition of the subtype relation. Proeedingsof the 7th European Conferene on Objet-Oriented Programming, 1993.[63℄ Nany Lynh and Frits Vaandrager. Forward and bakward simulations { PartI: Untimed systems. Information and Computation, 121(2), 1995.[64℄ Anders Moeller and Mihael I. Shwartzbah. The pointer assertion logi en-gine. In Proeedings of the SIGPLAN '01 Conferene on Programming LanguageDesign and Implementation, 2001.[65℄ Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Priniples of ProgramAnalysis. Springer-Verlag, 1999.[66℄ James Noble, Jan Vitek, and John Potter. Flexible alias protetion. In Proeed-ings of the 12th European Conferene on Objet-Oriented Programming, volume1145. Springer-Verlag LNCS, 1998.[67℄ Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-ing, Mass., 1994.[68℄ John Plevyak, Vijay Karamheti, and Andrew A. Chien. Analysis of dynamistrutures for eÆient parallel exeution. In Workshop on Languages and Com-pilers for Parallel Arhitetures, 1993.[69℄ William Pugh. Skip lists: A probabilisti alternative to balaned trees. InCommuniations of the ACM 33(6):668{676, 1990.[70℄ Trygve Reenskaug. Working With Objets. Prentie Hall, 1996.[71℄ John Reynolds. Intuitionisti reasoning about shared mutable data struture.In Proeedings of the Symposium in Celebration of the Work of C.A.R. Hoare,2000.[72℄ Noam Rinetzky and Mooly Sagiv. Interproedual shape analysis for reursiveprograms. In Proeedings of the 10th International Conferene on Compiler Con-strution, 2001.[73℄ Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing byGraph Transformations Vol.1. World Sienti�, 1997.[74℄ Radu Rugina and Martin Rinard. Design-driven ompilation. In Proeedings ofthe 10th International Conferene on Compiler Constrution, 2001.[75℄ James Rumbaugh, Ivar Jaobson, and Grady Booh. The Uni�ed ModellingLanguage Referene Manual. Addison-Wesley, Reading, Mass., 1999.[76℄ James R. Russell, Robert E. Strom, and Daniel M. Yellin. A hekable inter-fae language for pointer-based strutures. In Proeedings of the workshop onInterfae de�nition languages, 1994.102

www.manaraa.com

[77℄ Mooly Sagiv, Thomas Reps, and ReinhardWilhelm. Solving shape-analysis prob-lems in languages with destrutive updating. In Proeedings of the 23rd AnnualACM Symposium on the Priniples of Programming Languages, St. PetersburgBeah, FL, 1996.[78℄ Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametri shape analysisvia 3-valued logi. In Proeedings of the 26th Annual ACM Symposium on thePriniples of Programming Languages, 1999.[79℄ E. Shonberg, J. T. Shwartz, and M. Sharir. An automati tehnique for se-letion of data representations in Setl programs. Transations on ProgrammingLanguages and Systems, 3(2):126{143, 1991.[80℄ Miha Sharir and Amir Pnueli. Two approahes to interproedural data owanalysis problems. In Program Flow Analysis: Theory and Appliations. Prentie-Hall, In., 1981.[81℄ Mihael Sipser. Introdution to the Theory of Computation. PWS PublishingCompany, 1997.[82℄ F. Smith, D. Walker, and G. Morrisett. Alias types. In Proeedings of the 14thEuropean Symposium on Programming, Berlin, Germany, Marh 2000.[83℄ Robert E. Strom and Daniel M. Yellin. Extending typestate heking usingonditional liveness analysis. IEEE Transations on Software Engineering, May1993.[84℄ Robert E. Strom and Shaula Yemini. Typestate: A programming language on-ept for enhaning software reliability. IEEE Transations on Software Engi-neering, January 1986.[85℄ Wolfgang Thomas. Languages, automata, and logi. In Handbook of FormalLanguages Vol.3: Beyond Words. Springer-Verlag, 1997.[86℄ Mihael VanHilst and David Notkin. Using role omponents to implementollaboration-based designs. In Proeedings of the 11th Annual Conferene onObjet-Oriented Programming Systems, Languages and Appliations, 1996.[87℄ Philip Wadler. Linear types an hange the world! In IFIP TC 2 WorkingConferene on Programming Conepts and Methods, Sea of Galilee, Israel, 1990.[88℄ David Walker and Greg Morrisett. Alias types for reursive data strutures. InWorkshop on Types in Compilation, 2000.[89℄ Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. Shape analysis. In Pro-eedings of the 9th International Conferene on Compiler Constrution, Berlin,Germany, 2000. Springer-Verlag. 103

www.manaraa.com

[90℄ R. Wilson and M. S. Lam. EÆient ontext-sensitive pointer analysis for Cprograms. In Proeedings of the SIGPLAN '95 Conferene on ProgrammingLanguage Design and Implementation, June 1995.[91℄ Zhihen Xu, Barton Miller, and Thomas Reps. Safety heking of mahine ode.In Proeedings of the SIGPLAN '00 Conferene on Programming Language De-sign and Implementation, 2000.[92℄ Zhihen Xu, Thomas Reps, and Barton Miller. Typestate heking of mahineode. In Proeedings of the 15th European Symposium on Programming, 2001.[93℄ Phillip M. Yelland. Experimental lassi�ation failities for Smalltalk. In Pro-eedings of the 6th Annual Conferene on Objet-Oriented Programming Systems,Languages and Appliations, 1992.

104

