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Designing an Algorithm for Role AnalysisbyViktor Kun
akSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon August 20, 2001, in partial ful�llment of therequirements for the degree ofMaster of S
ien
eAbstra
tThis thesis presents a system for spe
ifying 
onstraints on dynami
ally 
hanging ref-eren
ing relationships of heap obje
ts, and an analysis for stati
 veri�
ation of these
onstraints. The 
onstraint spe
i�
ation system is based on the 
on
ept of role. Therole of an obje
t depends, in large part, on its aliasing relationships with other ob-je
ts, with the role of ea
h obje
t 
hanging as its aliasing relationships 
hange. Inthis way roles 
apture obje
t and data stru
ture properties su
h as unique referen
es,membership of obje
ts in data stru
tures, disjointness of data stru
tures, absen
e ofrepresentation exposure, bidire
tional asso
iations, treeness, and absen
e or presen
eof 
y
les in the heap.Roles generalize linear types by allowing multiple aliases of heap obje
ts thatparti
ipate in re
ursive data stru
tures. Unlike graph grammars and graph types,roles 
ontain suÆ
iently general 
onstraints to 
onservatively approximate any datastru
ture.We give a semanti
s for mutually re
ursive role de�nitions and derive propertiesof roles as an invariant spe
i�
ation language. We introdu
e a programming modelthat allows temporary violations of role 
onstraints. We des
ribe a stati
 role analysisfor verifying that a program 
onforms to the programming model. The analysis uses�xpoint 
omputation to synthesize loop invariants in ea
h pro
edure.We introdu
e a pro
edure interfa
e spe
i�
ation language and its semanti
s. Wepresent an interpro
edural, 
ompositional, and 
ontext-sensitive role analysis thatveri�es that a program respe
ts the role 
onstraints a
ross pro
edure 
alls.Thesis Supervisor: Martin C. RinardTitle: Asso
iate Professor
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Chapter 1Introdu
tionTypes 
apture important properties of the obje
ts that programs manipulate, in
reas-ing both the safety and readability of the program. Traditional type systems 
aptureproperties (su
h as the format of data items stored in the �elds of the obje
t) thatare invariant over the lifetime of the obje
t. But in many 
ases, properties that do
hange are as important as properties that do not. Re
ognizing the bene�t of 
aptur-ing these 
hanges, resear
hers have developed systems in whi
h the type of the obje
t
hanges as the values stored in its �elds 
hange or as the program invokes operationson the obje
t [84, 83, 20, 91, 92, 11, 40, 26℄. These systems integrate the 
on
ept of
hanging obje
t states into the type system.The fundamental idea in this work is that the state of ea
h obje
t also dependson the data stru
tures in whi
h it parti
ipates. Our type system therefore 
apturesthe referen
ing relationships that determine this data stru
ture parti
ipation. Asobje
ts move between data stru
tures, their types 
hange to re
e
t their 
hangingrelationships with other obje
ts. Our system uses roles to formalize the 
on
ept ofa type that depends on the referen
ing relationships. Ea
h role de
laration provides
omplete aliasing information for ea
h obje
t that plays that role|in addition tospe
ifying roles for the �elds of the obje
t, the role de
laration also identi�es the
omplete set of referen
es in the heap that refer to the obje
t. In this way rolesgeneralize linear type systems [87, 6, 56℄ by allowing multiple aliases to be stati
allytra
ked, and extend alias types [82, 88℄ with the ability to spe
ify roles of obje
tsthat are the sour
e of aliases.This approa
h atta
ks a key diÆ
ulty asso
iated with state-based type systems:the need to ensure that any state 
hange performed using one alias is 
orre
tly re-
e
ted in the de
lared types of the other aliases. Be
ause ea
h obje
t's role identi�esall of its heap aliases, the analysis 
an verify the 
orre
tness of the role informa-tion at all remaining or new heap aliases after an operation 
hanges the referen
ingrelationships.Roles 
apture important obje
t and data stru
ture properties, improving both thesafety and transparen
y of the program. For example, roles allow the programmer toexpress data stru
ture 
onsisten
y properties (with the properties veri�ed by the roleanalysis), to improve the pre
ision of pro
edure interfa
e spe
i�
ations (by allowingthe programmer to spe
ify the role of ea
h parameter), to express pre
ise referen
-11
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LiveHeader

LiveList
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SleepingProc

proc proc

left right

SleepingTree

root

null

next
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left
right

DeadProc

RunningProc

next

RunningHeader

next
prev

prev
next

next prev

prev

Figure 1-1: Role Referen
e Diagram for a S
hedulering and intera
tion behaviors between obje
ts (by spe
ifying veri�ed roles for obje
t�elds and aliases), and to express 
onstraints on the 
oordinated movements of ob-je
ts between data stru
tures (by using the aliasing information in role de�nitions toidentify legal data stru
ture membership 
ombinations). Roles may also aid programoptimization by providing pre
ise aliasing information.
1.1 Overview of RolesFigure 1-1 presents a role referen
e diagram for a pro
ess s
heduler. Ea
h box in thediagram denotes a disjoint set of obje
ts of a given role. The labelled arrows betweenboxes indi
ate possible referen
es between the obje
ts in ea
h set. As the diagramindi
ates, the s
heduler maintains a list of live pro
esses. A live pro
ess 
an be eitherrunning or sleeping. The running pro
esses form a doubly-linked list, while sleepingpro
esses form a binary tree. Both kinds of pro
esses have pro
 referen
es from thelive list nodes LiveList. Header obje
ts RunningHeader and SleepingTree simplifyoperations on the data stru
tures that store the pro
ess obje
ts.As Figure 1-1 shows, data stru
ture parti
ipation determines the 
on
eptual stateof ea
h obje
t. In our example, pro
esses that parti
ipate in the sleeping pro
ess treedata stru
ture are 
lassi�ed as sleeping pro
esses, while pro
esses that parti
ipate inthe running pro
ess list data stru
ture are 
lassi�ed as running pro
esses. Moreover,movements between data stru
tures 
orrespond to 
on
eptual state 
hanges|when apro
ess stops sleeping and starts running, it moves from the sleeping pro
ess tree tothe running pro
ess list. 12
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1.1.1 Role De�nitionsFigure 1-2 presents the role de�nitions for the obje
ts in our example.1 Ea
h rolede�nition spe
i�es the 
onstraints that an obje
t must satisfy to play the role. Field
onstraints spe
ify the roles of the obje
ts to whi
h the �elds refer, while slot 
on-straints identify the number and kind of aliases of the obje
t.Role de�nitions may also 
ontain two additional kinds of 
onstraints: identity
onstraints, whi
h spe
ify paths that lead ba
k to the obje
t, and a
y
li
ity 
on-straints, whi
h spe
ify paths with no 
y
les. In our example, the identity 
onstraintnext.prev in the RunningPro
 role spe
i�es the 
y
li
 doubly-linked list 
onstraintthat following the next, then prev �elds always leads ba
k to the initial obje
t. Thea
y
li
 
onstraint left, right in the SleepingPro
 role spe
i�es that there are no
y
les in the heap involving only left and right edges. On the other hand, the listof running pro
esses must be 
y
li
 be
ause its nodes 
an never point to null.The slot 
onstraints spe
ify the 
omplete set of heap aliases for the obje
t. In ourexample, this implies that no pro
ess 
an be simultaneously running and sleeping.In general, roles 
an 
apture data stru
ture 
onsisten
y properties su
h as dis-jointness and 
an prevent representation exposure [14, 22℄. As a data stru
ture de-s
ription language, roles 
an naturally spe
ify trees with additional pointers. Roles
an also approximate non-tree data stru
tures like sparse matri
es. Be
ause mostrole 
onstraints are lo
al, it is possible to indu
tively infer them from data stru
tureinstan
es.1.1.2 Roles and Pro
edure Interfa
esPro
edures spe
ify the initial and �nal roles of their parameters. The suspendpro
edure in Figure 1-3, for example, takes two parameters: an obje
t with roleRunningPro
 p, and the SleepingTree s. The pro
edure 
hanges the role of the ob-je
t referen
ed by p to SleepingPro
 whereas the obje
t referen
ed by s retainsits original role. To perform the role 
hange, the pro
edure removes p from itsRunningList data stru
ture and inserts it into the SleepingTree data stru
tures. If the pro
edure fails to perform the insertions or deletions 
orre
tly, for instan
eby leaving an obje
t in both stru
tures, the role analysis will report an error.1.2 ContributionsThis thesis makes the following 
ontributions:� Role Con
ept: The 
on
ept that the state of an obje
t depends on its refer-en
ing relationships; spe
i�
ally, that obje
ts with di�erent heap aliases shouldbe regarded as having di�erent states.1In general, ea
h role de�nition would spe
ify the stati
 
lass of obje
ts that 
an play that role.To simplify the presentation, we assume that all obje
ts are instan
es of a single 
lass with a set of�elds F . 13
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role LiveHeader {fields next : LiveList | null;}role LiveList {fields next : LiveList | null,pro
 : RunningPro
 | SleepingPro
;slots LiveList.next | LiveHeader.next;a
y
li
 next;}role RunningHeader {fields next : RunningPro
 | RunningHeader,prev : RunningPro
 | RunningHeader;slots RunningHeader.next | RunningPro
.next,RunningHeader.prev | RunningPro
.prev;identities next.prev, prev.next;}role RunningPro
 {fields next : RunningPro
 | RunningHeader,prev : RunningPro
 | RunningHeader;slots RunningHeader.next | RunningPro
.next,RunningHeader.prev | RunningPro
.prev,LiveList.pro
;identities next.prev, prev.next;}role SleepingTree {fields root : SleepingPro
 | null,a
y
li
 left, right;}role SleepingPro
 {fields left : SleepingPro
 | null,right : SleepingPro
 | null;slots SleepingPro
.left | SleepingPro
.right |SleepingTree.root;LiveList.pro
;a
y
li
 left, right;}role DeadPro
 { }Figure 1-2: Role De�nitions for a S
heduler
14



www.manaraa.com

pro
edure suspend(p : RunningPro
 ->> SleepingPro
,s : SleepingTree)lo
al pp, pn, r;{ pp = p.prev; pn = p.next;r = s.root;p.prev = null; p.next = null;pp.next = pn; pn.prev = pp;s.root = p; p.left = r;setRole(p : SleepingPro
);} Figure 1-3: Suspend Pro
edure� Role Semanti
s and its Consequen
es: It presents a semanti
s of a lan-guage for de�ning roles. The programmer 
an use this language to expressdata stru
ture invariants and properties su
h as parti
ipation of obje
ts in datastru
tures. We show how roles 
an be used to 
ontrol the aliasing of obje
ts, andexpress rea
hability properties. We show 
ertain de
idability and unde
idabilityresults for roles.� Programming Model: It presents a set of role 
onsisten
y rules. Theserules give a programming model for 
hanging the role of an obje
t and the
ir
umstan
es under whi
h roles 
an be temporarily violated.� Pro
edure Interfa
e Spe
i�
ation Language: It presents a language forspe
ifying the initial 
ontext and e�e
ts of ea
h pro
edure. The e�e
ts summa-rize the a
tions of the pro
edure in terms of the referen
es it 
hanges and theregions of the heap that it a�e
ts.� Role Analysis Algorithm: It presents an algorithm for verifying that theprogram respe
ts the 
onstraints given by a set of role de�nitions and pro
edurespe
i�
ations. The algorithm uses a data-
ow analysis to infer intermediatereferen
ing relationships between obje
ts, allowing the programmer to fo
uson role 
hanges and pro
edure interfa
es. The analysis 
an verify a
y
li
ity
onstraints even if they are temporarily violated. The interpro
edural analysisveri�es read e�e
ts as well as \may" and \must" write e�e
ts by maintaininga �ne grained mapping between the 
urrent heap and the initial 
ontext of thepro
edure.1.3 Outline of the ThesisThe rest of the thesis is organized as follows.In Chapter 2 we introdu
e the representation of program heap (2.1.1) and therepresentation of role 
onstraints introdu
ed by the role de�nitions (2.1.2). We for-15
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mally de�ne the semanti
s of roles by giving a 
riterion for a heap to satisfy the role
onstraints (2.1.3). We then highlight some appli
ation level properties that 
an bespe
i�ed using roles (2.2) and give examples of using roles to des
ribe data stru
tures.We give a list of properties (2.3) that show how roles help 
ontrol aliasing while giv-ing more 
exibility than linear type systems. We show how to dedu
e rea
habilityproperties from role 
onstraints and give a 
riterion for a set of roles to de�ne atree. A more detailed study of the 
onstraints expressible using roles is delegated toAppendix A, where we prove de
idability of the satis�ability problem for a 
lass ofrole 
onstraints (A.1.4), and unde
idability of the model in
lusion for role de�nitions(A.2).In Chapter 3 we introdu
e a programming model that enables role de�nitions tobe integrated with the program. We introdu
e a 
ore programming language withpro
edures (3.1) and give its operational semanti
s (3.2). Next we introdu
e thenotion of onstage and o�stage nodes (3.3) whi
h de�nes the 
riterion for temporaryviolations of role 
onstraints by generalizing heap 
onsisten
y from (2.1.3). As partof the programming model we introdu
e restri
tions on programs that simplify lateranalysis and ensure role 
onsisten
y a
ross pro
edure 
alls (3.4). We give the pre-
onditions for transitions of the operational semanti
s that formalize role 
onsisten
y.We then introdu
e an instrumented semanti
s that gives the programmer 
omplete
ontrol over the assignment of roles to obje
ts (3.5). This 
ompletes the des
riptionof the programming model, whi
h is veri�ed by the role analysis.We present the intrapro
edural role analysis in Chapter 4. We de�ne the abstra
trepresentation of 
on
rete heaps 
alled role graphs and spe
ify the abstra
tion relation(4.1). We then de�ne transfer fun
tions for the role analysis (4.2). This in
ludes theexpansion relation (4.2.1) used to instantiate nodes from o�stage to onstage usinginstantiation (4.2.1) and split (4.2.1). We model the movement of nodes o�stage usingthe 
ontra
tion relation (4.2.2). We also des
ribe the 
he
ks that the role analysisperforms on role graphs to ensure that the program respe
ts the programming model(4.2.3, 4.2.4).In Chapter 5 we generalize the role analysis to the interpro
edural 
ase. We�rst introdu
e pro
edure interfa
e spe
i�
ation language (5.1) that des
ribes initial
ontext (5.1.1) and e�e
ts (5.1.2) of ea
h pro
edure. We give examples of pro
e-dure interfa
es and de�ne the semanti
s of initial 
ontexts (5.1.1) and e�e
ts (5.1.3).The interpro
edural analysis extends the intrapro
edural analysis from Chapter 4 byverifying that ea
h pro
edure respe
ts its spe
i�
ation (5.2) and by instantiating pro-
edure spe
i�
ations to analyze 
all sites (5.3). The veri�
ation of transfer relationsuses a �ne grained mapping between nodes of the role graph at ea
h program pointand nodes of the initial 
ontext. The analysis of 
all sites needs to establish the map-ping between the 
urrent role graphs and 
allee's initial 
ontext (5.3.1), instantiate
allee's e�e
ts (5.3.2) and then re
onstru
t the roles of modi�ed non-parameter nodes(5.3.3).In Chapter 6 we present the extensions of the basi
 role framework des
ribed inprevious 
hapters. These extensions allow a stati
ally unbounded number of heapreferen
es to obje
ts (6.1), roles de�ned by referen
es from lo
al variables, non-in
remental 
hanges to the role assignment (6.4), and roles for spe
ifying partial16
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information about obje
t's �elds and aliases (6.5). The last se
tion also outlines asubtyping 
riterion for partial roles.In Chapter 7 we 
ompare our work to the previous typestate systems, the propos-als to 
ontrol the aliasing in obje
t oriented programming and the term roles as usedin obje
t modeling and database 
ommunity. We 
ompare our role analysis with pro-gram veri�
ation and analysis te
hniques for dynami
ally allo
ated data stru
tures.Chapter 8 
on
ludes the thesis.

17
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Chapter 2Roles as a Constraint Spe
i�
ationLanguageIn this 
hapter we introdu
e the formal semanti
s of roles. We then show how to useroles to spe
ify properties of obje
ts and data stru
tures.2.1 Abstra
t Syntax and Semanti
s of RolesIn this se
tion, we pre
isely de�ne what it means for a given heap to satisfy a set ofrole de�nitions. In subsequent se
tions we will use this de�nition as a starting pointfor a programming model and role analysis.2.1.1 Heap RepresentationWe represent a 
on
rete program heap as a �nite dire
ted graph H
 with nodes(H
)representing obje
ts of the heap and labelled edges representing heap referen
es. Agraph edge ho1; f; o2i 2 H
 denotes a referen
e with �eld name f from obje
t o1 toobje
t o2. To simplify the presentation, we �x a global set of �elds F and assumethat all obje
ts have the set of �elds F .2.1.2 Role RepresentationLet R denote the set of roles used in role de�nitions, nullR be a spe
ial symbol alwaysdenoting a null obje
t null
, and let R0 = R [ fnullRg. We represent ea
h role as the
onjun
tion of the following four kinds of 
onstraints:� Fields: For every �eld name f 2 F we introdu
e a fun
tion �eldf : R ! 2R0denoting the set of roles that obje
ts of role r 2 R 
an referen
e through �eldf . A �eld f of role r 
an be null if and only if nullR 2 �eldf(r). The expli
ituse of nullR and the possibility to spe
ify a set of alternative roles for every �eldallows roles to express both may and must referen
ing relationships.19
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� Slots: Every role r has slotno(r) slots. A slot slotk(r) of role r 2 R is a subsetof R � F . Let o be an obje
t of role r and o0 an obje
t of role r0. A referen
eho0; f; oi 2 H
 
an �ll a slot k of obje
t o if and only if hr0; fi 2 slotk(r). Anobje
t with role r must have ea
h of its slots �lled by exa
tly one referen
e.� Identities: Every role r 2 R has a set of identities(r) � F � F . Identitiesare pairs of �elds hf; gi su
h that following referen
e f on obje
t o and thenreturning on referen
e g leads ba
k to o.� A
y
li
ities: Every role r 2 R has a set a
y
li
(r) � F of �elds along whi
h
y
les are forbidden.2.1.3 Role Semanti
sWe de�ne the semanti
s of roles as a 
onjun
tion of invariants asso
iated with rolede�nitions. A 
on
rete role assignment is a map �
 : nodes(H
) ! R0 su
h that�
(null
) = nullR.De�nition 1 Given a set of role de�nitions, we say that heap H
 is role 
onsistent i�there exists a role assignment �
 : nodes(H
)! R0 su
h that for every o 2 nodes(H
)the predi
ate lo
allyConsistent(o;H
; �
) is satis�ed. We 
all any su
h role assignment�
 a valid role assignment.The predi
ate lo
allyConsistent(o;H
; �
) formalizes the 
onstraints asso
iated withrole de�nitions.De�nition 2 lo
allyConsistent(o;H
; �
) i� all of the following 
onditions are met.Let r = �
(o).1) For every �eld f 2 F and ho; f; o0i 2 H
, �
(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 H
g be the set of all aliasesof node o. Then k = slotno(r) and there exists some permutation p of the setf1; : : : ; kg su
h that h�
(oi); fii 2 slotpi(r) for all i.3) If ho; f; o0i 2 H
, ho0; g; o00i 2 H
, andhf; gi 2 identities(r), then o = o00.4) It is not the 
ase that graph H
 
ontains a 
y
leo1; f1; : : : ; os; fs; o1 where o1 = o andf1; : : : ; fs 2 a
y
li
(r)Note that a role 
onsistent heap may have multiple valid role assignments �
. However,in ea
h of these role assignments, every obje
t o is assigned exa
tly one role �
(o).The existen
e of a role assignment �
 with the property �
(o1) 6= �
(o2) thus implieso1 6= o2. This is just one of the ways in whi
h roles make aliasing more predi
table.20
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2.2 Using RolesRoles 
apture important properties of the obje
ts and provide useful informationabout how the a
tions of the program a�e
t those properties.� Consisten
y Properties: Roles 
an ensure that the program respe
ts appli-
ation - level data stru
ture 
onsisten
y properties. The roles in our pro
esss
heduler, for example, ensure that a pro
ess 
annot be simultaneously sleepingand running.� Interfa
e Changes: In many 
ases, the interfa
e of an obje
t 
hanges as itsreferen
ing relationships 
hange. In our pro
ess s
heduler, for example, onlyrunning pro
esses 
an be suspended. Be
ause pro
edures de
lare the roles oftheir parameters, the role system 
an ensure that the program uses obje
ts
orre
tly even as the obje
t's interfa
e 
hanges.� Multiple Uses: Code fa
toring minimizes 
ode dupli
ation by produ
inggeneral-purpose 
lasses (su
h as the Java Ve
tor and Hashtable 
lasses) that
an be used in a variety of 
ontexts. But this pra
ti
e obs
ures the di�erentpurposes that di�erent instan
es of these 
lasses serve in the 
omputation. Be-
ause ea
h instan
e's purpose is usually re
e
ted in its relationships with otherobje
ts, roles 
an often re
apture these distin
tions.� Correlated Relationships: In many 
ases, groups of obje
ts 
ooperate toimplement a pie
e of fun
tionality. Standard type de
larations provide someinformation about these 
ollaborations by identifying the points-to relationshipsbetween related obje
ts at the granularity of 
lasses. But roles 
an 
apture amu
h more pre
ise notion of 
ooperation, be
ause they tra
k 
orrelated state
hanges of related obje
ts.Programmers 
an use roles for spe
ifying the membership of obje
ts in data stru
-tures and the stru
tural invariants of data stru
tures. In both 
ases, the slot 
on-straints are essential.When used to des
ribe membership of an obje
t in a data stru
ture, slots spe
ifythe sour
e of the alias from a data stru
ture node that stores the obje
t. By assigningdi�erent sets of roles to data stru
tures used at di�erent program points, it is possibleto distinguish nodes stored in di�erent data stru
ture instan
es. As an obje
t movesbetween data stru
tures, the role of the obje
t 
hanges appropriately to re
e
t thenew sour
e of the alias.When des
ribing nodes of data stru
tures, slot 
onstraints spe
ify the aliasing
onstraints of nodes; this is enough to pre
isely des
ribe a variety of data stru
turesand approximate many others. Property 16 below shows how to identify trees in rolede�nitions even if tree nodes have additional aliases from other sets of nodes. It isalso possible to de�ne nodes whi
h make up a 
ompound data stru
ture linked viadisjoint sets of �elds, su
h as threaded trees, sparse matri
es and skip lists.21
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Figure 2-1: Roles of Nodes of a Sparse MatrixExample 3 The following role de�nitions spe
ify a sparse matrix of width and heightat least 3. These de�nitions 
an be easily 
onstru
ted from a sket
h of a sparse matrixin Figure 2-1.role A1 {fields x : A2, y : A4;a
y
li
 x, y;}role A2 {fields x : A2 | A3, y : A5;slots A1.x | A2.x;a
y
li
 x, y;}role A3 {fields y : A6;slots A2.x;a
y
li
 x, y;}role A4 {fields x : A5, y : A4 | A7;slots A1.y | A4.y;a
y
li
 x, y;}role A5 {fields x : A5 | A6, y : A5 | A8;slots A4.x | A5.x, A2.y | A5.y;a
y
li
 x, y; 22
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Figure 2-2: Sket
h of a Two-Level Skip List}role A6 {fields y : A6 | A9;slots A5.x, A3.y | A6.y;a
y
li
 x, y;}role A7 {fields x : A8;slots A4.y;a
y
li
 x, y;}role A8 {fields x : A8 | A9;slots A7.x | A8.x, A5.y;a
y
li
 x, y;}role A9 {slots A8.x, A6.y;a
y
li
 x, y;}4Example 4 We next give role de�nitions for a two-level skip list [69℄ sket
hed inFigure 2-2.role SkipList {fields one : OneNode | TwoNode | null;two : TwoNode | null;}role OneNode {fields one : OneNode | TwoNode | null;two : null;slots OneNode.one | TwoNode.one | SkipList.one;a
y
li
 one, two;} 23
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role TwoNode {fields one : OneNode | TwoNode | null;two : TwoNode | null;slots OneNode.one | TwoNode.one | SkipList.one,TwoNode.two | SkipList.two;a
y
li
 one, two;}42.3 Some Simple Properties of RolesIn this se
tion we identify some of the invariants expressible using sets of mutuallyre
ursive role de�nitions. Some further properties of roles are given in Appendix A.The following properties show some of the ways role spe
i�
ations make obje
taliasing more predi
table. They are an immediate 
onsequen
e of the semanti
s ofroles.Property 5 (Role Disjointness)If there exists a valid role assignment �
 for H
 su
h that �(o1) 6= �(o2), then o1 6= o2.The previous property gives a simple 
riterion for showing that obje
ts o1 and o2 areunaliased: �nd a valid role assignment whi
h assigns di�erent roles to o1 and o2. Thisuse of roles generalizes the use of stati
 types for pointer analysis [24℄. Sin
e roles
reate a �ner partition of obje
ts than a typi
al stati
 type system, their potentialfor proving absen
e of aliasing is even larger.Property 6 (Disjointness Propagation)If ho1; f; o2i; ho3; g; o4i 2 H
, o1 6= o3, and there exists a valid role assignment �
 forH
 su
h that �
(o2) = �
(o4) = r but �eldf(r) \ �eldg(r) = ;, then o2 6= o4.Property 7 (Generalized Uniqueness)If ho1; f; o2i; ho3; g; o4i 2 H
, o1 6= o3, and there exists a role assignment �
 su
h that�
(o2) = �
(o4) = r, but there are no indi
es i 6= j su
h that h�
(o1); fi 2 sloti(r) andh�
(o2); gi 2 slotj(r) then o2 6= o4.A spe
ial 
ase of Property 7 o

urs when slotno(r) = 1; this 
onstrains all referen
esto obje
ts of role r to be unique.Role de�nitions indu
e a role referen
e diagram RRD whi
h 
aptures some, butnot all, role 
onstraints.De�nition 8 (Role Referen
e Diagram)Given a set of de�nitions of roles R, a role referen
e diagram RRD is is a dire
tedgraph with nodes R0 and labelled edges de�ned byRRD = fhr; f; r0i j r0 2 �eldf (r) and 9i hr; fi 2 sloti(r0)g[ fhr; f; nullRi j nullR 2 �eldf (r)g24
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Ea
h role referen
e diagram is a re�nement of the 
orresponding 
lass diagram in astati
ally typed language, be
ause it partitions 
lasses into multiple roles a

ordingto their referen
ing relationships. The sets ��1
 (r) of obje
ts with role r 
hange duringprogram exe
ution, re
e
ting the 
hanging referen
ing relationships of obje
ts.Role de�nitions give more information than a role referen
e diagram. Slot 
on-straints spe
ify not only that obje
ts of role r1 
an referen
e obje
ts of role r2 along�eld f , but also give 
ardinalities on the number of referen
es from other obje
ts.In addition, role de�nitions in
lude identity and a
y
li
ity 
onstraints, whi
h are notpresent in role referen
e diagrams.Property 9 Let �
 be any valid role assignment. De�neG = fh�
(o1); f; �
(o2)i j ho1; f; o2i 2 H
gThen G is a subgraph of RRD.It follows from Property 9 that roles give an approximation of may-rea
hability amongheap obje
ts.Property 10 (May Rea
hability)If there is a valid role assignment �
 : nodes(H
)! R0 su
h that �
(o1) 6= �
(o2) whereo1; o2 2 nodes(H
) and there is no path from �
(o1) to �
(o2) in the role referen
ediagram RRD, then there is no path from o1 to o2 in H
.The next property shows the advantage of expli
itly spe
ifying null referen
es inrole de�nitions. While the ability to spe
ify a
y
li
ity is provided by the a
y
li

onstraint, it is also possible to indire
tly spe
ify must-
y
li
ity.Property 11 (Must Cy
li
ity)Let F0 � F and RCYC � R be a set of nodes in the role referen
e diagram RRD su
hthat for every node r 2 RCYC, if hr; f; r0i 2 RRD then r0 2 RCYC. If �
 is a valid roleassignment for H
, then every obje
t o1 2 H
 with �
(o1) 2 RCYC is a member of a
y
le in H
 with edges from F0.The following property shows that roles 
an spe
ify a form of must-rea
hability amongthe sets of obje
ts with the same role.Property 12 (Downstream Path Termination)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RFINAL � R0 of the role referen
e diagram RRD su
h that for every node r 2 RINTER:1. F0 � a
y
li
(r)2. if hr; f; r0i 2 RRD for f 2 F0, then r0 2 RINTER [ RFINALLet �
 be a valid role assignment for H
. Then every path in H
 starting from anobje
t o1 with role �
(o1) 2 RINTER and 
ontaining only edges labelled with F0 is apre�x of a path that terminates at some obje
t o2 with �
(o2) 2 RFINAL.25
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Property 13 (Upstream Path Termination)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RINIT � R0 of the role referen
e diagram RRD su
h that for every node r 2 RINTER:1. F0 � a
y
li
(r)2. if hr0; f; ri 2 RRD for f 2 F0, then r0 2 RINTER [ RINITLet �
 be a valid role assignment for H
. Then every path in H
 terminating at anobje
t o2 with �
(o2) 2 RINTER and 
ontaining only edges labelled with F0 is a suÆx ofa path whi
h started at some obje
t o1, where �
(o1) 2 RINIT.We next des
ribe the 
onditions that guarantee the existen
e at least one path in theheap, rather than stating the properties of all paths as in Properties 12 and 13.Property 14 (Downstream Must Rea
hability)Assume that for some set of �elds F0 � F there are sets of roles RINTER � R,RFINAL � R0 of the role referen
e diagram RRD su
h that for every node r 2 RINTER:1. F0 � a
y
li
(r)2. there exists f 2 F0 su
h that �eldf(r) � RINTER [ RFINALLet �
 be a valid role assignment for H
. Then for every obje
t o1 with �
(o1) 2 RINTERthere is a path in H
 with edges from F0 from o1 to some obje
t o2 where �
(o2) 2 RFINAL.Property 15 (Upstream Must Rea
hability)Assume that for some set of �elds F0 � F there are sets of nodes RINTER � R,RINIT � R of the role referen
e diagram RRD su
h that for every node r 2 RINTER:1. F0 � a
y
li
(r)2. there exists k su
h that slotk(r) � (RINTER [ RINIT)� FLet �
 be a valid role assignment for H
. Then for every obje
t o2 with �
(o2) 2 RINTERthere is a path in H
 from some obje
t o1 with �
(o1) 2 RINIT to the obje
t o2.Trees are a 
lass of data stru
tures espe
ially suited for stati
 analysis. Roles 
anexpress graphs that are not trees, but it is useful to identify trees as 
ertain sets ofmutually re
ursive role de�nitions.Property 16 (Treeness)Let RTREE � R be a set of roles and F0 � F set of �elds su
h that for every r 2 RTREE1. F0 � a
y
li
(r)2. jfi j sloti(r) \ (RTREE � F0) 6= ;gj � 1Let �
 be a valid role assignment for H
 andS � fhn1; f; n2i j hn1; f; n2i 2 H
; �(n1); �(n2) 2 RTREE; f 2 F0gThen S is a set of trees. 26
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Chapter 3A Programming ModelIn this 
hapter we de�ne what it means for an exe
ution of a program to respe
t therole 
onstraints. This de�nition is 
ompli
ated by the need to allow the program totemporarily violate the role 
onstraints during data stru
ture manipulations. Ourapproa
h is to let the program violate the 
onstraints for obje
ts referen
ed by lo
alvariables or parameters, but require all other obje
ts to satisfy the 
onstraints.We �rst present a simple imperative language with dynami
 obje
t allo
ation andgive its operational semanti
s. We then spe
ify additional statement pre
onditionsthat enfor
e the role 
onsisten
y requirements.3.1 A Simple Imperative LanguageOur 
ore language 
ontains, as basi
 statements, Load (x=y.f), Store (x.f=y), Copy(x=y), and New (x=new). All variables are referen
es to obje
ts in the global heapand all assignments are referen
e assignments. We use an elementary test statement
ombined with nondeterministi
 
hoi
e and iteration to express if and while state-ment, using the usual translation [44, 5℄ given in Figure 3-1. We represent the 
ontrol
ow of programs using 
ontrol-
ow graphs.A program is a 
olle
tion of pro
edures pro
 2 Pro
. Pro
edures 
hange theglobal heap but do not return values. Every pro
edure pro
 has a list of parame-ters param(pro
) = fparami(pro
)gi and a list of lo
al variables lo
al(pro
). We usevar(pro
) to denote param(pro
)[ lo
al(pro
). A pro
edure de�nition spe
i�es the ini-tial role preRk(pro
) and the �nal role postRk(pro
) for every parameter paramk(pro
).We use pro
j for indi
es j 2 N to denote a
tivation re
ords of pro
edure pro
. We fur-ther assume that there are no modi�
ations of parameter variables so every parameterreferen
es the same obje
t throughout the lifetime of pro
edure a
tivation.if t stat1 stat2 � (test(t); stat1)|(test(!t); stat2)while t stat � (test(t); stat)*; test(!t)Figure 3-1: Synta
ti
 Sugar for if and while27
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Example 17 The following kill pro
edure removes a pro
ess from both the doublylinked list of running pro
esses and the list of all a
tive pro
esses. This is indi
atedby the transition from RunningPro
 to DeadPro
.pro
edure kill(p : RunningPro
 ->> DeadPro
,l : LiveHeader)lo
al prev, 
urrent, 
p, nxt, lp, ln;{ // find 'p' in 'l'prev = l; 
urrent = l.next;
p = 
urrent.pro
;while (
p != p) {prev = 
urrent;
urrent = 
urrent.next;
p = 
urrent.pro
;}// remove '
urrent' and 'p' from a
tive listnxt = 
urrent.next;prev.next = nxt; 
urrent.
urrent.pro
 = null;setRole(
urrent : IsolatedCell);// remove 'p' from running listlp = p.prev; ln = p.next;p.prev = null; p.next = null;lp.next = ln; ln.prev = lp;setRole(p : DeadPro
);}43.2 Operational Semanti
sIn this se
tion we give the operational semanti
s for our language. We fo
us on the�rst three 
olumns in Figures 3-2 and 3-3; the safety 
onditions in the fourth 
olumnare detailed in Se
tion 3.4.Figure 3-2 gives the small-step operational semanti
s for the basi
 statements.We use A ℄ B to denote the union A [ B where the sets A and B are disjoint.The program state 
onsists of the sta
k s and the 
on
rete heap H
. The sta
k sis a sequen
e of pairs p�pro
i 2 �(Pro
 � N ), where p 2 NCFG(pro
) is a programpoint, and pro
i 2 Pro
 � N is an a
tivation re
ord of pro
edure pro
. Programpoints p 2 NCFG(pro
) are nodes of the 
ontrol-
ow graphs. There is one 
ontrol-
owgraph for every pro
edure pro
. An edge of the 
ontrol-
ow graph hp; p0i 2 ECFG(pro
)indi
ates that 
ontrol may transfer from point p to point p0. We write p : stat tostate that program point p 
ontains a statement stat. The 
ontrol 
ow graph of ea
hpro
edure 
ontains spe
ial program points entry and exit indi
ating pro
edure entry28
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Statement Transition Constraints Role Consisten
yp : x=y.f hp�pro
i; s;H
 ℄ fhpro
i; x; oxigi!hp0�pro
i; s;H 0
i x; y 2 lo
al(pro
);hpro
i; y; oyi; hoy; f; ofi 2 H
;hp; p0i 2 ECFG(pro
);H 0
 = H
 ℄ fpro
i; x; ofg a

essible(of ; pro
i; H
);
on(H 0
; o�stage(H 0
))p : x.f=y hp�pro
i; s;H
 ℄ fhox; f; ofigi!hp0�pro
i; s;H 0
i x; y 2 lo
al(pro
);hpro
i; x; oxi; hpro
i; y; oyi 2 H
;hp; p0i 2 ECFG(pro
);H 0
 = H
 ℄ fhox; f; oyig of 2 onstage(H
; pro
i)
on(H 0
; o�stage(H 0
))p : x=y hp�pro
i; s;H
 ℄ fhpro
i; x; oxigi!hp0�pro
i; s;H 0
i x 2 lo
al(pro
);y 2 var(pro
);hpro
i; y; oyi 2 H
;hp; p0i 2 ECFG(pro
);H 0
 = H
 ℄ fhpro
i; x; oyig 
on(H 0
; o�stage(H 0
))
p : x=new hp�pro
i; s;H
 ℄ fhpro
i; x; oxigi!hp0�pro
i; s;H 0
i x 2 lo
al(pro
);on fresh;hp; p0i 2 ECFG(pro
);H 0
 = H
 ℄ fhpro
i; x; onig ℄ nulls;nulls = fong � F � fnullg 
on(H 0
; o�stage(H 0
))p : test(
) hp�pro
i; s;H
i!hp0�pro
i; s;H
i satis�ed
(
; pro
i; H
);hp; p0i 2 ECFG(pro
) 
on(H
; o�stage(H
))satis�ed
(x==y; pro
i; H
) i� fo j hpro
i; x; oi 2 H
g = fo j hpro
i; y; oi 2 H
gsatis�ed
(!(x==y); pro
i; H
) i� not satis�ed
(x==y; pro
i; H
)a

essible(o; pro
i; H
) := (9p 2 param(pro
) : hpro
i; p; oi 2 H
)or not (9pro
0j 9v 2 var(pro
0) : hpro
0j; v; oi 2 H
)Figure 3-2: Semanti
s of Basi
 Statements
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Statement Transition Constraints Role Consisten
yentry : hp�pro
i; s;H
i!hp0�pro
i; s;H
 ℄ nullsi nulls = fhpro
i; v; null
i jv 2 lo
al(pro
);hp; p0i 2 ECFG(pro
) 
on(H
; o�stage(H
))p : pro
0(xk)k hp�pro
i; s;H
i!hentry�pro
0j; p0�pro
i; s;H 0
i j fresh in p�pro
i; s;hp; p0i 2 ECFG(pro
);ok : hpro
i; xk; oki 2 H
;H 0
 = H
 ℄ fhpro
0j; pk; okigk;8k pk = paramk(pro
0) 
onW(ra; H
; S);ra = fhok; preRk(pro
0)igk;S = o�stage(H
) [ fokgkexit : hp�pro
i; s;H
i!hs;H
 n AFi AF = fhpro
i; v; ni jhpro
i; v; ni 2 H
g 
onW(ra; H
; S);ra = fhparndk(pro
i); postRk(pro
)igk;S = o�stage(H
) [fo j hpro
i; v; oi 2 H
gparndk(pro
i) = o where hpro
i; paramk(pro
); oi 2 H
Figure 3-3: Semanti
s of Pro
edure Calland exit, with no statements asso
iated with them. We assume that ea
h 
onditionof a test statement is of the form x==y or !(x==y) where x and y are either variablesor a spe
ial 
onstant null whi
h always points to the null
 obje
t.The 
on
rete heap is either an error heap error
 or a non-error heap. A non-errorheap H
 � N � F � N [ ((Pro
 � N ) � V � N) is a dire
ted graph with labellededges, where nodes represent obje
ts and pro
edure a
tivation re
ords, whereas edgesrepresent heap referen
es and lo
al variables. An edge ho1; f; o2i 2 N�F�N denotesa referen
e from obje
t o1 to obje
t o2 via �eld f 2 F . An edge hpro
i; x; oi 2 H
means that lo
al variable x in a
tivation re
ord pro
i points to obje
t o.A load statement x=y.f makes the variable x point to node of , whi
h is referen
edby the f �eld of obje
t oy, whi
h is in turn referen
ed by variable y. A store statementx.f=y repla
es the referen
e along �eld f in obje
t ox by a referen
e to obje
t oy thatis referen
ed by y. The 
opy statement x=y 
opies a referen
e to obje
t oy into variablex. The statement x=new 
reates a new obje
t on with all �elds initially referen
ingnull
, and makes x point to on. The statement test(
) allows exe
ution to pro
eedonly if 
ondition 
 is satis�ed.Figure 3-3 shows the semanti
s of pro
edure 
alls. Pro
edure 
all pushes newa
tivation re
ord onto sta
k, inserts it into the heap, and initializes the parameters.Pro
edure entry initializes lo
al variables. Pro
edure exit removes the a
tivationre
ord from the heap and the sta
k.
3.3 Onstage and O�stage Obje
tsAt every program point the set nodes(H
) of all obje
ts of heap H
 
an be partitionedinto: 30
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1. onstage obje
ts (onstage(H
)) referen
ed by a lo
al variable or parameter ofsome a
tivation frameonstage(H
; pro
i):=fo j 9x 2 var(pro
)hpro
i; x; oi 2 H
gonstage(H
):= Spro
i onstage(H
; pro
i)2. o�stage obje
ts (o�stage(H
)) unreferen
ed by lo
al or parameter variableso�stage(H
) := nodes(H
) n onstage(H
)Onstage obje
ts need not have 
orre
t roles. O�stage obje
ts must have 
orre
t rolesassuming some role assignment for onstage obje
ts.De�nition 18 Given a set of role de�nitions and a set of obje
ts S
 � nodes(S
), wesay that heap H
 is role 
onsistent for S
, and we write 
on(H
; S
), i� there existsa role assignment �
 : nodes(H
) ! R0 su
h that the lo
allyConsistent(o;H
; �
; S
)predi
ate is satis�ed for every obje
t o 2 S
.We de�ne lo
allyConsistent(o;H
; �
; S
) to generalize the lo
allyConsistent(o;H
; �
)predi
ate, weakening the a
y
li
ity 
ondition.De�nition 19 lo
allyConsistent(o;H
; �
; S
) holds i� 
onditions 1), 2), and 3) ofDe�nition 2 are satis�ed and the following 
ondition holds:4') It is not the 
ase that graph H
 
ontains a 
y
le o1; f1; : : : ; os; fs; o1 su
h thato1 = o, f1; : : : ; fs 2 a
y
li
(r), and additionally o1; : : : ; os 2 S
.Here S
 is the set of onstage obje
ts that are not allowed to 
reate a 
y
le whereasobje
ts in nodes(H
) n S
 are exempt from the a
y
li
ity 
ondition. The predi
ateslo
allyConsistent(o;H
; �
; S
) and 
on(H
; S
) are monotoni
 in S
, so a larger S
implies a stronger invariant. For S
 = nodes(H
), 
onsisten
y for S
 is equivalentwith heap 
onsisten
y from De�nition 1. Note that the role assignment �
 spe
i�esroles even for obje
ts o 2 nodes(H
) n S
. This is be
ause the role of o may in
uen
ethe role 
onsisten
y of obje
ts in S
 whi
h are adja
ent to o.At pro
edure 
alls, the role de
larations for parameters restri
t the set of poten-tial role assignments. We therefore generalize 
on(H
; S
) to 
onW(ra; H
; S
), whi
hrestri
ts the set of role assignments �
 
onsidered for heap 
onsisten
y.De�nition 20 Given a set of role de�nitions, a heap H
, a set S
 � nodes(H
),and a partial role assignment ra � S
 ! R, we say that the heap H
 is 
onsistentwith ra for S
, and write 
onW(ra; H
; S
), i� there exists a (total) role assignment�
 : nodes(H
) ! R0 su
h that ra � �
 and for every obje
t o 2 S
 the predi
atelo
allyConsistent(o;H
; �
; S
) is satis�ed. 31
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3.4 Role Consisten
yWe are now able to pre
isely state the role 
onsisten
y requirements that must besatis�ed for program exe
ution. The role 
onsisten
y requirements are in the fourthrow of Figures 3-2 and 3-3. We assume the operational semanti
s is extended withtransitions leading to a program state with heap error
 whenever role 
onsisten
y isviolated.3.4.1 O�stage Consisten
yAt every program point, we require 
on(H
; o�stage(H
)) to be satis�ed. This meansthat o�stage obje
ts have 
orre
t roles, but onstage obje
ts may have their role tem-porarily violated.3.4.2 Referen
e Removal Consisten
yThe Store statement x.f=y has the following safety pre
ondition. When a referen
ehox; f; ofi 2 H
 for hpro
j; x; oxi 2 H
, and hox; f; ofi 2 H
 is removed from the heap,both ox and of must be referen
ed from the 
urrent pro
edure a
tivation re
ord. Itis suÆ
ient to verify this 
ondition for of , as ox is already onstage by de�nition. Thereferen
e removal 
onsisten
y 
ondition enables the 
ompletion of the role 
hangefor of after the referen
e hox; f; ofi is removed and ensures that heap referen
es areintrodu
ed and removed only between onstage obje
ts.3.4.3 Pro
edure Call Consisten
yOur programming model ensures role 
onsisten
y a
ross pro
edure 
alls using thefollowing proto
ol.A pro
edure 
all pro
0(x1; :::; xp) in Figure 3-3 requires the role 
onsisten
y pre-
ondition 
onW(ra; H
; S
), where the partial role assignment ra requires obje
ts ok,
orresponding to parameters xk, to have roles preRk(pro
0) expe
ted by the 
allee, andS
 = o�stage(H
) [ fokgk for hpro
j; xk; oki 2 H
.To ensure that the 
allee pro
0j never observes in
orre
t roles, we impose an a

essi-bility 
ondition for the 
allee's Load statements (see the fourth 
olumn of Figure 3-2).The a

essibility 
ondition prohibits a

ess to any obje
t o referen
ed by some lo
alvariable of a sta
k frame other than pro
0j, unless o is referen
ed by some parameterof pro
0j. Provided that this 
ondition is not violated, the 
allee pro
0j only a

essesobje
ts with 
orre
t roles, even though obje
ts that it does not a

ess may have in-
orre
t roles. In Chapter 5 we show how the role analysis stati
ally ensures that thea

essibility 
ondition is never violated.At the pro
edure exit point (Figure 3-3), we require 
orre
t roles for all obje
tsreferen
ed by the 
urrent a
tivation frame pro
0j. This implies that heap operationsperformed by pro
0j preserve heap 
onsisten
y for all obje
ts a

essed by pro
0j.32
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Statement Transition Constraints Role Consisten
yp : roleChe
k(x1; : : : ; xn; ra) hp�pro
i; s;H
i!hp0�pro
i; s;H
i hp; p0i 2 ECFG 
onW(ra; H
; S);S = o�stage(H
) [fo j hpro
i; xk; oi 2 H
gFigure 3-4: Operational Semanti
s of Expli
it Role Che
k3.4.4 Expli
it Role Che
kThe programmer 
an spe
ify a stronger invariant at any program point using state-ment roleChe
k(x1; : : : ; xp; ra). As Figure 3-4 indi
ates, roleChe
k requires the
onW(ra; H
; S
) predi
ate to be satis�ed for the supplied partial role assignmentra where S
 = o�stage(H
) [ fokgk for obje
ts ok referen
ed by given lo
al variablesxk.3.5 Instrumented Semanti
sWe expe
t the programmer to have a spe
i�
 role assignment in mind when writingthe program, with this role assignment 
hanging as the statements of the program
hange the referen
ing relationships. So when the programmer wishes to 
hange therole of an obje
t, he or she writes a program that brings the obje
t onstage, 
hangesits referen
ing relationships so that it plays a new role, then puts it o�stage in itsnew role. The roles of other obje
ts do not 
hange.1To support these programmer expe
tations, we introdu
e an augmented program-ming model in whi
h the role assignment �
 is 
on
eptually part of the program'sstate. The role assignment 
hanges only if the programmer 
hanges it expli
itly us-ing the setRole statement. The augmented programming model has an underlyinginstrumented semanti
s as opposed to the original semanti
s.Example 21 The original semanti
s allows asserting di�erent roles at di�erent pro-gram points even if the stru
ture of the heap was not 
hanged, as in the followingpro
edure foo.role A1 { fields f : B1; }role B1 { slots A1.f; }role A2 { fields f : B2; }role B2 { slots A2.f; }pro
edure foo()var x, y;{ x = new; y = new;x.f = y;1An extension to the programming model supports 
as
ading role 
hanges in whi
h a single role
hange propagates through the heap 
hanging the roles of o�stage obje
ts, see Se
tion 6.4.33
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Statement Transition Constraints Role Consisten
y
p : x=new hp�pro
i; s;H
 ℄ fhpro
i; x; oxig; �
i!hp0�pro
i; s;H 0
; �0
i x 2 lo
al(pro
);on fresh;hp; p0i 2 ECFG(pro
);H 0
 = H
℄fhpro
i; x; onig℄fong � F � fnullg;�0
 = �
[on 7! unknown℄ 
onW(�0
; H 0
; o�stage(H 0
))

p :setRole(x:r) hp�pro
i; s;H
; �
i!hp0�pro
i; s;H
; �0
i x 2 lo
al(pro
i);hpro
i; x; oxi 2 H
;�0
 = �
[ox 7! r℄;hp; p0i 2 ECFG 
onW(�0
; H
; o�stage(H
))p : stat hs;H
; �
i!hs0; H 0
; �
i hs;H
i!hs0; H 0
i P ^ 
onW(�
 [ ra; H 00
 ; S)for every original 
onditionP ^ 
onW(ra; H 00
 ; S)Figure 3-5: Instrumented Semanti
sroleChe
k(x,y, x:A1,y:B1);roleChe
k(x,y, x:A2,y:B2);}Both role 
he
ks would su

eed sin
e ea
h of the spe
i�ed partial role assignments 
anbe extended to a valid role assignment. On the other hand, the role 
he
k statementroleChe
k(x,y, x:A1,y:B2) would fail.The pro
edure foo in the instrumented semanti
s 
an be written as follows.pro
edure foo()var x, y;{ x = new; y = new;x.f = y;setRole(x:A1); setRole(y:B1);roleChe
k(x,y, x:A1,y:B1);setRole(x:A2); setRole(y:B2);roleChe
k(x,y, x:A2,y:B2);}The setRole statement makes the role 
hange of obje
t expli
it. 4The instrumented semanti
s extends the 
on
rete heap H
 with a role assign-ment �
. Figure 3-5 outlines the 
hanges in instrumented semanti
s with respe
t tothe original semanti
s. We introdu
e a new statement setRole(x:r), whi
h mod-i�es a role assignment �
, giving �
[ox 7! r℄, where ox is the obje
t referen
ed byx. All statements other than setRole preserve the 
urrent role assignment. Forevery 
onsisten
y 
ondition 
onW(ra; H
; S
) in the original semanti
s, the instru-mented semanti
s uses the 
orresponding 
ondition 
onW(�
 [ ra; H
; S
) and failsif �
 is not an extension of ra. Here we 
onsider 
on(H
; S) to be a shorthandfor 
onW(;; H
; S). For example, the new role 
onsisten
y 
ondition for the Copystatement x=y is 
onW(�
; H
; o�stage(H
)). The New statement assigns an identi�er34
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unknown to the newly 
reated obje
t on. By de�nition, a node with unknown doesnot satisfy the lo
allyConsistent predi
ate. This means that setRole must be used toset a a valid role of on before on moves o�stage.By introdu
ing an instrumented semanti
s we are not suggesting an implemen-tation that expli
itly stores roles of obje
ts at run-time. We instead use the instru-mented semanti
s as the basis of our role analysis and ensure that all role 
he
ks 
anbe stati
ally removed. Be
ause the instrumented semanti
s is more restri
tive thanthe original semanti
s, our role analysis is a 
onservative approximation of both theinstrumented semanti
s and the original semanti
s.
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Chapter 4Intrapro
edural Role AnalysisThis 
hapter presents an intrapro
edural role analysis algorithm. The goal of therole analysis is to stati
ally verify the role 
onsisten
y requirements des
ribed in theprevious 
hapter.The key observation behind our analysis algorithm is that we 
an in
rementallyverify role 
onsisten
y of the entire 
on
rete heap H
 by ensuring role 
onsisten
y forevery node when it goes o�stage. This allows us to represent the stati
ally unboundedo�stage portion of the heap using summary nodes with \may" referen
es. In 
ontrast,we use a \must" interpretation for referen
es from and to onstage nodes. The exa
trepresentation of onstage nodes allows the analysis to verify role 
onsisten
y in thepresen
e of temporary violations of role 
onstraints.Our analysis representation is a graph in whi
h nodes represent obje
ts and edgesrepresent referen
es between obje
ts. There are two kinds of nodes: onstage nodesrepresent onstage obje
ts, with ea
h onstage node representing one onstage obje
t;and o�stage nodes, with ea
h o�stage node 
orresponding to a set of obje
ts thatplay that role. To in
rease the pre
ision of the analysis, the algorithm o

asionallygenerates multiple o�stage nodes that represent disjoint sets of obje
ts playing thesame role. Distin
t o�stage obje
ts with the same role r represent disjoint sets ofobje
ts of role r with di�erent rea
hability properties from onstage nodes.We frame role analysis as a data-
ow analysis operating on a distributive latti
eP(RoleGraphs) of sets of role graphs with set union [ as the join operator. This
hapter fo
uses on the intrapro
edural analysis. We use pro

 to denote the topmosta
tivation re
ord in a 
on
rete heap H
. In Chapter 5 we generalize the algorithm tothe 
ompositional interpro
edural analysis.4.1 Abstra
tion RelationEvery data-
ow fa
t G � RoleGraphs is a set of role graphs G 2 G. Every role graphG 2 RoleGraphs is either a bottom role graph ?G representing the set of all 
on
reteheaps (in
luding error
), or a tuple G = hH; �;Ki representing non-error 
on
reteheaps, where� H � N�F�N is the abstra
t heap with nodes N representing obje
ts and �elds37
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F . The abstra
t heap H represents heap referen
es hn1; f; n2i and variablesof the 
urrently analyzed pro
edure hpro
; x; ni where x 2 lo
al(pro
). Nullreferen
es are represented as referen
es to abstra
t node null. We de�ne abstra
tonstage nodes onstage(H) = fn j hpro
; x; ni 2 H; x 2 lo
al(pro
)[param(pro
)gand abstra
t o�stage nodes o�stage(H) = nodes(H) n onstage(H) n fpro
; nullg.� � : nodes(H)! R0 is an abstra
t role assignment, �(null) = nullR;� K : nodes(H) ! fi; sg indi
ates the kind of ea
h node; when K(n) = i, thenn is an individual node representing at most one obje
t, and when K(n) = s,n is a summary node representing zero or more obje
ts. We require K(pro
) =K(null) = i, and require all onstage nodes to be individual, K[onstage(H)℄ =fig.The abstra
tion relation � relates a pair hH
; �
i of 
on
rete heap and 
on
rete roleassignment with an abstra
t role graph G.De�nition 22 We say that an abstra
t role graph G represents 
on
rete heap H
 withrole assignment �
, and write hH
; �
i�G, i� G = ?G or: H
 6= error
, G = hH; �;Ki,and there exists a fun
tion h : nodes(H
)! nodes(H) su
h that1) H
 is role 
onsistent: 
onW(�
; H
; o�stage(H
)),2) identity relations of onstage nodes with o�stage nodes hold: if ho1; f; o2i 2 H
and ho2; g; o3i 2 H
 for o1 2 onstage(H
), o2 2 o�stage(H
), andhf; gi 2 identities(�
(o1)), then o3 = o1;3) h is a graph homomorphism: if ho1; f; o2i 2 H
 then hh(o1); f; h(o2)i 2 H;4) an individual node represents at most one 
on
rete obje
t: K(n) = i impliesjh�1(n)j � 1;5) h is bije
tion on edges whi
h originate or terminate at onstage nodes:if hn1; f; n2i 2 H and n1 2 onstage(H) or n2 2 onstage(H), then there existsexa
tly one ho1; f; o2i 2 H
 su
h that h(o1) = n1 and h(o2) = n2;6) h(null
) = null and h(pro

) = pro
;7) the abstra
t role assignment � 
orresponds to the 
on
rete role assignment:�
(o) = �(h(o)) for every obje
t o 2 nodes(H
).Note that the error heap error
 
an be represented only by the bottom role graph ?G.The analysis uses ?G to indi
ate a potential role error.Condition 3) implies that role graph edges are a 
onservative approximation of
on
rete heap referen
es. These edges are in general \may" edges. Hen
e it is possiblefor an o�stage node n that hn; f; n1i, hn; f; n2i 2 H for n1 6= n2. This 
annot happenwhen n 2 onstage(H) be
ause of 5). Another 
onsequen
e of 5) is that an edge in Hfrom an onstage node n0 to a summary node ns implies that ns represents at leastone obje
t. Condition 2) strengthens 1) by requiring 
ertain identity 
onstraints foronstage nodes to hold, as explained in Se
tion 4.2.4.Example 23 Consider the following role de
laration for an a
y
li
 list.38
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h
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h
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nullFigure 4-1: Abstra
tion Relation
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role L { // List headerfields first : LN | null;}role LN { // List nodefields next : LN | null;slots LN.next | L.first;a
y
li
 next;}Figure 4-1 shows a role graph and one of the 
on
rete heaps represented by therole graph via homomorphism h. There are two lo
al variables, prev and 
urrent,referen
ing distin
t onstage obje
ts. Onstage obje
ts are isomorphi
 to onstage nodesin the role graph. In 
ontrast, there are two obje
ts mapped to ea
h of the summarynodes with role LN (shown as LN-labelled re
tangles in Figure 4-1). Note that thesets of obje
ts mapped to these two summary nodes are disjoint. The �rst summaryLN-node represents obje
ts stored in the list before the obje
t referen
ed by prev.The se
ond summary LN-node represents obje
ts stored in the list after the obje
treferen
ed by 
urrent. 44.2 Transfer Fun
tionsThe key 
ompli
ation in developing the transfer fun
tions for the role analysis isto a

urately model the movement of obje
ts onstage and o�stage. For example, aload statement x=y.f may 
ause the obje
t referred to by y.f to move onstage. Inaddition, if x was the only referen
e to an onstage obje
t o before the statementexe
uted, obje
t o moves o�stage after the exe
ution of the load statement, and thusmust satisfy the lo
allyConsistent predi
ate.The analysis uses an expansion relation � to model the movement of obje
tsonstage and a 
ontra
tion relation � to model the movement of obje
ts o�stage. Theexpansion relation uses the invariant that o�stage nodes have 
orre
t roles to generatepossible aliasing relationships for the node being pulled onstage. The 
ontra
tionrelation establishes the role invariants for the node going o�stage, allowing the nodeto be merged into the other o�stage nodes and represented more 
ompa
tly.We present our role analysis as an abstra
t exe
ution relation st;. The abstra
texe
ution ensures that the abstra
tion relation � is a forward simulation relation [63℄from the spa
e of 
on
rete heaps with role assignments to the set RoleGraphs. Thesimulation relation implies that the tra
es of; in
lude the tra
es of the instrumentedsemanti
s!. To ensure that the program does not violate 
onstraints asso
iated withroles, it is thus suÆ
ient to guarantee that ?G is not rea
hable via ;.To prove that ?G is not rea
hable in the abstra
t exe
ution, the analysis 
omputesfor every program point p a set of role graphs G that 
onservatively approximates thepossible program states at point p. The transfer fun
tion for a statement st is animage [[st℄℄(G) = fG0 j G 2 G; G st;G0g. The analysis 
omputes the relation st; inthree steps: 40
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hH
; �
i - hH 0
; �0
i���	� �? ���R�G1 � G2 st=) G3 � G4Figure 4-2: Simulation Relation Between Abstra
t and Con
rete Exe
utionTransition De�nition ConditionshH; �;Ki x=y.f; G0 hH; �;Ki ny;f� G1 x=y.f=) G2 nx�G0 hpro
; x; nxi; hpro
; y; nyi 2 HhH; �;Ki x=y; G0 hH; �;Ki x=y=)G1 n1�G0 hpro
; x; n1i 2 HhH; �;Ki x=new; G0 hH; �;Ki x=new=) G1 n1�G0 hpro
; x; n1i 2 HhH; �;Ki st;G0 hH; �;Ki st=)G0 st 2 fx.f=y;test(
);setRole(x:r);roleChe
k(x1::p; ra)gFigure 4-3: Abstra
t Exe
ution ;1. ensure that the relevant nodes are instantiated using expansion relation � (Se
-tion 4.2.1);2. perform symboli
 exe
ution st=) of the statement st (Se
tion 4.2.3);3. merge nodes if needed using 
ontra
tion relation � to keep the role graphbounded (Se
tion 4.2.2).Figure 4-2 shows how the abstra
tion relation � relates �, st=), and � with the 
on-
rete exe
ution ! in instrumented semanti
s. Assume that a 
on
rete heap hH
; �
iis represented by the role graph G1. Then one of the role graphs G2 obtained afterexpansion remains an abstra
tion of hH
; �
i. The symboli
 exe
ution st=) followedby the 
ontra
tion relation � 
orresponds to the instrumented operational semanti
s!. Figure 4-3 shows rules for the abstra
t exe
ution relation st;. Only Load statementuses the expansion relation, be
ause the other statements operate on obje
ts thatare already onstage. Load, Copy, and New statements may remove a lo
al variablereferen
e from an obje
t, so they use 
ontra
tion relation to move the obje
t o�stageif needed. For the rest of the statements, the abstra
t exe
ution redu
es to symboli
exe
ution =) des
ribed in Se
tion 4.2.3.41
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Transition De�nition ConditionhH; �;Ki n;f�hH; �;Ki hn; f; n0i 2 H; n0 2 onstage(H)hH; �;Ki n;f� G0 hH; �;Ki n0*n0hH1; �1; K1i n0k G0 hn; f; n0i 2 H; n0 2 o�stage(H)hn; f; n0i 2 H1Figure 4-4: Expansion RelationNondeterminism and FailureThe st; relation is not a fun
tion be
ause the expansion relation � 
an generate aset of role graphs from a single role graph. Also, there might be no st; transitionsoriginating from a given state G if the symboli
 exe
ution =) produ
es no results.This 
orresponds to a tra
e whi
h 
annot be extended further due to a test statementwhi
h fails in state G. This is in 
ontrast to a transition fromG to ?G whi
h indi
atesa potential role 
onsisten
y violation or a null pointer dereferen
e. We assume that=) and � relations 
ontain the transition h?G;?Gi to propagate the error role graph.In most 
ases we do not show the expli
it transitions to error states.4.2.1 ExpansionFigure 4-4 shows the expansion relation n;f� . Given a role graph hH; �;Ki, expansionattempts to produ
e a set of role graphs hH 0; �0; K 0i in ea
h of whi
h hn; f; n0i 2 H 0and K(n0) = i. Expansion is used in abstra
t exe
ution of the Load statement. It�rst 
he
ks for null pointer dereferen
e and reports an error if the 
he
k fails. Ifhn; f; n0i 2 H and K(n0) = i already hold, the expansion returns the original state.Otherwise, hn; f; n0i 2 H with K(n0) = s. In that 
ase, the summary node n0 is �rstinstantiated using instantiation relation n0*n0 . Next, the split relation n0k is applied. Let�(n0) = r. The split relation ensures that n0 is not a member of any 
y
le of o�stagenodes whi
h 
ontains only edges in a
y
li
(r). We explain instantiation and split inmore detail below.InstantiationFigure 4-5 presents the instantiation relation. Given a role graph G = hH; �;Ki,instantiation n0*n0 generates the set of role graphs hH 0; �0; K 0i su
h that ea
h 
on
reteheap represented by hH; �;Ki is represented by one of the graphs hH 0; �0; K 0i. Ea
hof the new role graphs 
ontains a fresh individual node n0 that satis�es lo
alChe
k.The edges of n0 are a subset of edges from and to n0.Let H0 be a subset of the referen
es between n0 and onstage nodes, and let H1 bea subset of the referen
es between n0 and o�stage nodes. Referen
es in H0 are movedfrom n0 to the new node n0, be
ause they represent at most one referen
e, while42
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hH; �;Ki n0*n0hH 0; �0; K 0i H 0 = H nH0 [H 00 [H 01�0 = �[n0 7! �(n0)℄K 0 = K[n0 7! i℄lo
alChe
k(n0; hH 0; �0; K 0i)H0 � H \ (onstage(H)� F � fn0g [ fn0g � F � onstage(H))H1 � H \ (o�stage(H)� F � fn0g [ fn0g � F � o�stage(H))H 00 = swing(n0; n0; H0)H 01 � swing(n0; n0; H1)swing(nold; nnew; H) = fhnnew; f; ni j hnold; f; ni 2 Hg [fhn; f; nnewi j hn; f; noldi 2 Hg [fhnnew; f; nnewi j hnold; f; noldi 2 HgFigure 4-5: Instantiation Relationreferen
es in H1 are 
opied to n0 be
ause they may represent multiple 
on
rete heapreferen
es. Moving a referen
e is formalized via the swing operation in Figure 4-5.The instantiation of a single graph 
an generate multiple role graphs depending onthe 
hoi
e of H 00 and H 01. The number of graphs generated is limited by the existingreferen
es of node n0 and by the lo
alChe
k requirement for n0. This is where our roleanalysis takes advantage of the 
onstraints asso
iated with role de�nitions to redu
ethe number of aliasing possibilities that need to be 
onsidered.SplitThe split relation is important for verifying operations on data stru
tures su
h as skiplists and sparse matri
es. It is also useful for improving the pre
ision of the initial setof role graphs on pro
edure entry (Se
tion 5.2.1).The goal of the split relation is to exploit the a
y
li
ity 
onstraints asso
iated withrole de�nitions. After a node n0 is brought onstage, split represents the a
y
li
ity
ondition of �(n0) expli
itly by eliminating impossible paths in the role graph. Ituses additional o�stage nodes to en
ode the rea
hability information implied by thea
y
li
ity 
onditions. This information 
an then be used even after the role of noden0 
hanges. In parti
ular, it allows the a
y
li
ity 
ondition of n0 to be veri�ed whenn0 moves o�stage.Example 24 Consider a role graph for an a
y
li
 list with nodes LN and a headernode L. The instantiated node n0 is in the middle of the list. Figure 4-6 a) shows arole graph with a single summary node representing all o�stage LN-nodes. Figure 4-6b) shows the role graph after applying the split relation. The resulting role graph
ontains two LN summary nodes. The �rst LN summary node represents obje
tsde�nitely rea
hable from n0 along next edges; the se
ond summary NL node representsobje
ts de�nitely not rea
hable from n0. 4Figure 4-7 shows the de�nition of the split operation on node n0, denoted by n0k .Let G = hH; �;Ki be the initial role graph and �(n0) = r. If a
y
li
(r) = ;, then the43
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LNLN

L

null

n
0

a) Before Split
null

LNLN

L

LN

n
0

b) After Split
Figure 4-6: A Role Graph for an A
y
li
 List
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hH; �;Ki n0khH; �;Ki; a
y
Che
k(n0; hH; �;Ki; o�stage(H))hH; �;Ki n0khH 0; �0; K 0i; :a
y
Che
k(n0; hH; �;Ki; o�stage(H))where H 0 = (H nH
y
) [Ho� [BfNR [BfR [ BtNR [ BtR [Nf [NtH
y
 = fhn1; f; n2i j n1 or n2 2 S
y
gHo� = f hn01; f; n02i j n1 = 
(n01); n2 = 
(n02);n1; n2 2 o�stage1(H); n1 or n2 2 S
y
;hn1; f; n2i 2 H gn(SR � a
y
li
(r)� SNR)H \ (onstage(H)� F [ fn0g � a
y
li
(r))� S
y
 = AfNR ℄ AfRH \ S
y
 � (a
y
li
(r)� fn0g [ F � onstage(H)) = AtNR ℄ AtRBfNR = fhn1; f; hNR(n2)i j hn1; f; n2i 2 AfNRgBfR = fhn1; f; hR(n2)i j hn1; f; n2i 2 AfRgBtNR = fhhNR(n1); f; n2i j hn1; f; n2i 2 AtNRgBtR = fhhR(n1); f; n2i j hn1; f; n2i 2 AtRgNf = fhn0; f; n0i j n0 2 SR; hn0; f; 
(n0)i 2 H; f 2 a
y
li
(r)gNt = fhn0; f; n0i j n0 2 SNR; h
(n0); f; n0i 2 H; f 2 a
y
li
(r)gS
y
 = fn j 9n1; : : : ; np�1 2 o�stage(H) :hn0; f0; n1i; : : : ; hnk; fk; ni; hn; fk+1; nk+2i; hnp�1; fp�1; n0i 2 H;f0; : : : ; fp�1 2 a
y
li
(r)go�stage1(H) = o�stage(H) n fn0gr = �(n0)�0(
(n)) = �(n)K 0(
(n)) = K(n)Figure 4-7: Split Relation
45
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split operation returns the original graph G; otherwise it pro
eeds as follows. Call apath in graph H 
y
le-indu
ing if all of its nodes are o�stage and all of its edges arein a
y
li
(r). Let S
y
 be the set of nodes n su
h that there is a 
y
le-indu
ing pathfrom n0 to n and a 
y
le-indu
ing path from n to n0.The goal of the split operation is to split the set S
y
 into a fresh set of nodes SNRrepresenting obje
ts de�nitely not rea
hable from n0 along edges in a
y
li
(r) and afresh set of nodes SR representing obje
ts de�nitely rea
hable from n0. Ea
h of thenewly generated graphs H 0 has the following properties:1) merging the 
orresponding nodes from SNR and SR in H 0 yields the originalgraph H;2) n0 is not a member of any 
y
le in H 0 
onsisting of o�stage nodes and edges ina
y
li
(r);3) onstage nodes in H 0 have the same number of �elds and aliases as in H.Let S0 = nodes(H) n S
y
 and let hNR : S
y
 ! SNR and hR : S
y
 ! SR be bije
tions.De�ne a fun
tion 
 : nodes(H 0)! nodes(H) as follows:
(n) = 8><>: n; n 2 S0h�1R (n); n 2 SRh�1NR(n); n 2 SNRThen H 0 � fhn01; f; n02i j h
(n01); f; 
(n02)i 2 Hg.Be
ause there are two 
opies of S0 in H 0, there might be multiple edges hn01; f; n02iin H 0 
orresponding to an edge h
(n1); f; 
(n2)i 2 H.If both n01 and n02 are o�stage nodes other than n0, we always in
lude hn01; f; n02iin H 0 unless hn01; f; n02i 2 SR � a
y
li
(r) � SNR. The last restri
tion prevents 
y
lesin H 0.For an edge hn1; f; n2i 2 H where n1 2 onstage(H) and n2 2 S
y
 we in
lude inH 0 either the edge hn1; f; hNR(n2)i or hn1; f; hR(n2)i but not both. Split generatesmultiple graphs H 0 to 
over both 
ases. We pro
eed analogously if n2 2 onstage(H)and n1 2 S
y
. The node n0 itself is treated in the same way as onstage nodes forf =2 a
y
li
(r). If f 2 a
y
li
(r) then we 
hoose referen
es to n0 to have a sour
e inSNR, whereas the referen
e from n0 have the target in SR.Details of the split 
onstru
tion are given in Figure 4-7. The intuitive meaning ofthe sets of edges is the following:Ho� : edges between o�stage nodesBfNR : edges from onstage nodes to SNRBfR : edges from onstage nodes to SRBtNR : edges from SNR to onstage nodesBtR : edges from SR to onstage nodesNf : a
y
li
(r)-edges from n0 to SRNt : a
y
li
(r)-edges from SNR to n0The sets BfNR and BfR are 
reated as images of the sets AfNR and AfR whi
h partitionedges from onstage nodes to nodes in S
y
. Similarly, the sets BtNR and BtR are46
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hH; �;Ki n�hH; �;Ki 9x 2 var(pro
) :hpro
; x; ni 2 HhH; �;Ki n� normalize(hH; �;Ki) nodeChe
k(n; hH; �;Ki; o�stage(H))Figure 4-8: Contra
tion Relationnormalize(hH; �;Ki) = hH 0; �0; K 0iwhere H 0 = fhn1=�; f; n2=�i j hn1; f; n2i 2 Hg�0(n=�) = �(n)K 0(n=�) = ( i; n=� = fng; K(n) = is; otherwisen1 � n2 i� n1 = n2 or(n1; n2 2 o�stage(H); �(n1) = �(n2);8n0 2 onstage(H) : (rea
h(n0; n1) i� rea
h(n0; n2))rea
h(n0; n) i� 9n1; : : : ; np�1 2 o�stage(n); 9f1; : : : ; fp 2 a
y
li
(�(n0)) :hn0; f1; n1i; : : : ; hnp�1; fp; ni 2 HFigure 4-9: Normalization
reated as images of the sets AtNR and AtR whi
h partition edges from nodes in S
y
to onstage nodes.We note that if in the split operation S
y
 = ; then split has no e�e
t and neednot be performed. In Figure 4-6, after performing a single split, there is no need tosplit for subsequent elements of the list. Examples like this indi
ate that split willnot be invoked frequently during the analysis.4.2.2 Contra
tionFigure 4-8 shows the non-error transitions of the 
ontra
tion relation n�. The analysisuses 
ontra
tion when a referen
e to node n is removed. If there are other referen
esto n, the result is the original graph. Otherwise n has just gone o�stage, so theanalysis invokes nodeChe
k. If the 
he
k fails, the result is ?G. If the role 
he
ksu

eeds, the 
ontra
tion invokes normalization operation to ensure that the rolegraph remains bounded. For simpli
ity, we use normalization whenever nodeChe
ksu

eeds, although it is suÆ
ient to perform normalization only at program pointsadja
ent to ba
k edges of the 
ontrol-
ow graph.NormalizationFigure 4-9 shows the normalization relation. Normalization a

epts a role graphhH; �;Ki and produ
es a normalized role graph hH 0; �0; K 0i whi
h is a fa
tor graph47
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Statement s Transition Conditionsx = y.f hH ℄ fpro
; x; nxg; �;Ki st=)hH ℄ fpro
; x; nfg; �;Ki hpro
; y; nyi; hny; f; nf i 2 Hx.f = y hH ℄ fnx; f; nfg; �;Ki st=)hH ℄ fnx; f; nyg; �;Ki hpro
; x; nxi; hpro
; y; nyi 2 Hnf 2 onstage(H)x = y hH ℄ fpro
; x; nxg; �;Ki st=)hH ℄ fpro
; x; nyg; �;Ki hpro
; y; nyi 2 Hx = new hH ℄ fpro
; x; nxg; �;Ki st=)hH ℄ fpro
; x; nng; �0; Ki nn fresh�0 = �[nn 7! unknown℄test(
) hH; �;Ki st=)hH; �;Ki satis�ed(
; H)setRole(x:r) hH; �;Ki st=)hH; �[nx 7! r℄; Ki hpro
; x; nxi 2 HroleChOk(nx; r; hH; �;Ki)roleChe
k(x1::p; ra) hH; �;Ki st=)hH; �;Ki 8i hpro
; xi; nii 2 HnodeChe
k(ni; hH; �;Ki; S)S = o�stage(H) [ fnigi�(ni) = ra(ni)satis�ed(x==y; H
) i� fo j hpro
; x; oi 2 H
g = fo j hpro
; y; oi 2 H
gsatis�ed(!(x==y); H
) i� not satis�ed(x==y; H
)Figure 4-10: Symboli
 Exe
ution of Basi
 Statementsof hH; �;Ki under the equivalen
e relation �. Two o�stage nodes are equivalentunder � if they have the same role and the same rea
hability from onstage nodes.Here we 
onsider node n to be rea
hable from an onstage node n0 i� there is somepath from n0 to n whose edges belong to a
y
li
(�(n0)) and whose nodes are all ino�stage(H). Note that, by 
onstru
tion, normalization avoids merging nodes whi
hwere previously generated in the split operation k, while still ensuring a bound onthe size of the role graph. For a pro
edure with l lo
al variables, f �elds and r rolesthe number of nodes in a role graph is on the order of r2l so the maximum size ofa 
hain in the latti
e is of the order of 2r2l. To ensure termination we 
onsider rolegraphs equal up to isomorphism. Isomorphism 
he
king 
an be done eÆ
iently ifnormalization assigns 
anoni
al names to the equivalen
e 
lasses it 
reates.4.2.3 Symboli
 Exe
utionFigure 4-10 shows the symboli
 exe
ution relation st=). In most 
ases, the symboli
exe
ution of a statement a
ts on the abstra
t heap in the same way that the statementwould a
t on the 
on
rete heap. In parti
ular, the Store statement always performsstrong updates. The simpli
ity of symboli
 exe
ution is due to 
onditions 3) and 5)in the abstra
tion relation �. These 
onditions are ensured by the � relation whi
hinstantiates nodes, allowing strong updates. The symboli
 exe
ution also veri�es the
onsisten
y 
onditions that are not veri�ed by � or �.Verifying Referen
e Removal Consisten
yThe abstra
t exe
ution st; for the Store statement 
an easily verify the Store safety
ondition from se
tion 3.4.2, be
ause the set of onstage and o�stage nodes is knownpre
isely for every role graph. It returns ?G if the safety 
ondition fails.48
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Symboli
 Exe
ution of setRoleThe setRole(x:r) statement sets the role of node nx referen
ed by variable x tor. Let G = hH; �;Ki be the 
urrent role graph and let hpro
; x; nxi 2 H. If nxhas no adja
ent o�stage nodes, the role 
hange always su

eeds. In general, thereare restri
tions on when the 
hange 
an be done. Let hH
; �
i be a 
on
rete heapwith role assignment represented by G and h be a homomorphism from H
 to H.Let h(ox) = nx. Let r0 = �
(ox). The symboli
 exe
ution must make sure that the
ondition 
onW(�
; H
; o�stage(H
)) 
ontinues to hold after the role 
hange. Be
ausethe set of onstage nodes does not 
hange, it suÆ
es to ensure that the original roles foro�stage nodes are 
onsistent with the new role r. The a
y
li
ity 
onstraint involvesonly o�stage nodes, so it remains satis�ed. The other role 
onstraints are lo
al, sothey 
an only be violated for o�stage neighbors of nx. To make sure that no violationso

ur, we require:1. r 2 �eldf (�(n)) for all hn; f; nxi 2 H, and2. hr; fi 2 sloti(�(n)) for all hnx; f; ni 2 H and every slot i su
h that hr0; fi 2sloti(�(n))This is suÆ
ient to guarantee 
onW(�
; H
; o�stage(H
)). To ensure 
ondition 2) inDe�nition 22 of the abstra
tion relation, we require that for every hf; gi 2 identities(r),1. hf; gi 2 identities(r0) or2. for all hnx; f; ni 2 H: K(n) = i and (hn; g; n0i 2 H implies n0 = nx).Symboli
 Exe
ution of roleChe
kThe symboli
 exe
ution of the statement roleChe
k(x1; : : : ; xp; ra) ensures that the
onW predi
ate of the 
on
rete semanti
s is satis�ed for the 
on
rete heaps whi
h
orrespond to the 
urrent abstra
t role graph. The symboli
 exe
ution returns theerror graph ?G if � is in
onsistent with ra or if any of the nodes ni referen
ed by xifail to satisfy nodeChe
k.A

essibility ConditionThe analysis ensures that the a

essibility 
ondition for the Load statement will besatis�ed in pro
edure pro
 before pro
edure pro
 is 
alled. This te
hnique makes useof pro
edure e�e
ts and is des
ribed in Chapter 5.4.2.4 Node Che
kThe analysis uses the nodeChe
k predi
ate to in
rementally maintain the abstra
tionrelation. We �rst de�ne the predi
ate lo
alChe
k, whi
h roughly 
orresponds to thepredi
ate lo
allyConsistent (De�nition 2), but ignores the nonlo
al a
y
li
ity 
onditionand additionally ensures 
ondition 2) from De�nition 22.49
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De�nition 25 For a role graph G = hH; �;Ki, an individual node n and a set S, thepredi
ate lo
alChe
k(n;G) holds i� the following 
onditions are met. Let r = �(n).1A. (Outgoing �elds 
he
k) For �elds f 2 F , if hn; f; n0i 2 H then �(n0) 2 �eldf (r).2A. (In
oming slots 
he
k) Let fhn1; f1i; : : : ; hnk; fkig = fhn0; fi j hn0; f; ni 2 Hg bethe set of all aliases of node n in abstra
t heap H. Then k = slotno(r) and thereexists a permutation p of the set f1; : : : ; kg su
h that h�(ni); fii 2 slotpi(r) forall i.3A. (Identity Che
k) If hn; f; n0i 2 H, hn0; g; n00i 2 H, hf; gi 2 identities(r), andK(n0) = i, then n = n00.4A. (Neighbor Identity Che
k) For every edge hn0; f; ni 2 H, if K(n0) = i, �(n0) = r0and hf; gi 2 identities(r0) then hn; g; n0i 2 H.5A. (Field Sanity Che
k) For every f 2 F there is exa
tly one edge hn; f; n0i 2 H.Conditions 1A and 2A 
orrespond to 
onditions 1) and 2) in De�nition 2. Condition3) in De�nition 19 is not ne
essarily implied by 
ondition 3A) if some of the neighborsof n are summary nodes. Condition 3) 
annot be established based only on summarynodes, be
ause verifying an identity 
onstraint for �eld f of node n where hn; f; n0i 2H requires knowing the identity of n0, not only its existen
e and role. We thereforerely on Condition 2) of the De�nition 22 to ensure that identity relations of neighborsof node n are satis�ed before n moves o�stage.The predi
ate a
y
Che
k(n;G; S) veri�es the a
y
li
ity 
ondition from De�ni-tion 19.De�nition 26 We say that node n 2 nodes(H) satis�es an a
y
li
ity 
he
k in graphG = hH; �;Ki with respe
t to set S, and we write a
y
Che
k(n;G; S), i� it is notthe 
ase that H 
ontains a 
y
le n1; f1; : : : ; ns; fs; n1 where n1 = n, f1; : : : ; fs 2a
y
li
(�(n)) and n1; : : : ; ns 2 S.This enables us to de�ne the nodeChe
k predi
ate.De�nition 27 nodeChe
k(n;G; S) holds i� both the predi
ate lo
alChe
k(n;G) andthe predi
ate a
y
Che
k(n;G; S) hold.
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Chapter 5Interpro
edural Role AnalysisThis 
hapter des
ribes the interpro
edural aspe
ts of our role analysis. Interpro-
edural role analysis 
an be viewed as an instan
e of the fun
tional approa
h tointerpro
edural data-
ow analysis [80℄. For ea
h program point p, the role analysisapproximates program tra
es from pro
edure entry to point p. The solution in [80℄proposes tagging the entire data-
ow fa
t G at point p with the data 
ow fa
t G0at pro
edure entry. In 
ontrast, our analysis 
omputes the 
orresponden
e betweenthe heaps at pro
edure entry and the heaps at point p at the granularity of sets ofobje
ts that 
onstitute the role graphs. This allows our analysis to dete
t whi
h re-gions of the heap have been modi�ed. We approximate the 
on
rete exe
utions ofa pro
edure with pro
edure transfer relations 
onsisting of 1) an initial 
ontext and2) a set of e�e
ts. E�e
ts are �ne-grained transfer relations whi
h summarize loadand store statements and 
an naturally des
ribe lo
al heap modi�
ations. In thiswork we assume that pro
edure transfer relations are supplied and we are 
on
ernedwith a) verifying that transfer relations are a 
onservative approximation of pro
edureimplementation b) instantiating transfer relations at 
all sites.5.1 Pro
edure Transfer RelationsA transfer relation for a pro
edure pro
 extends the pro
edure signature with aninitial 
ontext denoted 
ontext(pro
), and pro
edure e�e
ts denoted e�e
t(pro
).5.1.1 Initial ContextFigures 5-1 and 5-2 
ontain examples of initial 
ontext spe
i�
ation. An initial 
ontextis a des
ription of the initial role graph hHIC; �IC; KICi where �IC and KIC are determinedby a nodes de
laration and HIC is determined by a edges de
laration. The initial rolegraph spe
i�es a set of 
on
rete heaps at pro
edure entry and assigns names for setsof nodes in these heaps. The next de�nition is similar to De�nition 22.De�nition 28 We say that a 
on
rete heap hH
; �
i is represented by the initial rolegraph hHIC; �IC; KICi and write hH
; �
i�0hHIC; �IC; KICi, i� there exists a fun
tion h0 :nodes(H
)! nodes(HIC) su
h that 51
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1. 
onW(�
; H
; h�10 (read(pro
));2. h0 is a graph homomorphism;3. KIC(n) = i implies jh�10 (n)j � 1;4. h0(null
) = null and h0(pro

) = pro
;5. �
(o) = �IC(h0(o)) for every obje
t o 2 nodes(H
).Here read(pro
) is the set of initial-
ontext nodes read by the pro
edure (see below).For simpli
ity, we assume one 
ontext per pro
edure; it is straightforward to generalizethe treatment to multiple 
ontexts.A 
ontext is spe
i�ed by de
laring a list of nodes and a list of edges.A list of nodes is given with nodes de
laration. It spe
i�es a role for every nodeat pro
edure entry. Individual nodes are denoted with lower
ase identi�ers, summarynodes with upper
ase identi�ers. By using summary nodes it is possible to indi
atedisjointness of entire heap regions and rea
hability between nodes in the heap.There are two kinds of edges in the initial role graph: parameter edges and heapedges. A parameter edge p->pn is interpreted as hpro
; p; pni 2 HIC. We require everyparameter edge to have an individual node as a target, we 
all su
h node a parameternode. The role of a parameter node referen
ed by parami(pro
) is always preRi(pro
).Sin
e di�erent nodes in the initial role graph denote disjoint sets of 
on
rete obje
ts,parameter edgesp1 -> n1p2 -> n1imply that parameters p1 and p2 must be aliased,p1 -> n1p2 -> n2for
e p1 and p2 to be unaliased, whereasp1 -> n1|n2p2 -> n1|n2allow for both possibilities. A heap edge n -f-> m denotes hn; f; mi 2 HIC. Theshorthand notationn1 -f-> n2-g-> n3denotes two heap edges hn1; f; n2i; hn1; g; n3i 2 HIC. An expression n1 -f-> n2|n3denotes two edges n1 -f-> n2 and n1 -f-> n3. We use similar shorthands for pa-rameter edges.Example 29 Figure 5-1 shows an initial 
ontext graph for the kill pro
edure fromExample 17. It is a re�nement of the role referen
e diagram of Figure 1-1 as it givesdes
ription of the heap spe
i�
 to the entry of kill pro
edure. The initial 
ontext52
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LL1

SleepingProc

proc

null

lx

l

l2

LL2

ph

P1

P2

px

p

proc

proc

proc

proc

proc
proc

proc

nodes ph : RunningHeader,P1, px, P2 : RunningPro
,lx : LiveHeader,LL1, l2, LL2 : LiveList;edges p-> px, l-> px,ph -next-> P1|px-prev-> px|P2,P1 -next-> P1|px-prev-> ph|P1,px -next-> P2|ph-prev-> P1|ph,P2 -next-> P2|ph-prev-> P2|px,lx -next-> LL1|l2,LL1 -next-> LL1|l2-pro
-> P1|P2|SleepingPro
l2 -next-> LL2|null-pro
-> px,LL2 -next-> LL2|null-pro
-> P1|P2|SleepingPro
Figure 5-1: Initial Context for kill Pro
edure
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makes expli
it the fa
t that there is only one header node for the list of runningpro
esses (ph) and one header node for the list of all a
tive pro
esses (lx). Moreimportantly, it shows that traversing the list of a
tive pro
esses rea
hes a node l2whose pro
 �eld referen
es the parameter node px. This is suÆ
ient for the analysisto 
on
lude that there will be no null pointer dereferen
es in the while loop of killpro
edure sin
e l2 is rea
hed before null. 4We assume that the initial 
ontext always 
ontains the role referen
e diagram RRD(De�nition 8). Nodes from RRD are 
alled anonymous nodes and are referred to viarole name. This further redu
es the size of initial 
ontext spe
i�
ations by leveragingglobal role de�nitions. In Figure 5-1 there is no need to spe
ify edges originatingfrom SleepingPro
 or even mention the node SleepingTree, sin
e role de�nitionsalone 
ontain enough information on this part of the heap to enable the analysis ofthe pro
edure.5.1.2 Pro
edure E�e
tsPro
edure e�e
ts 
onservatively approximate the region of the heap that the pro-
edure a

esses and indi
ate 
hanges to the referen
ing relationships in that region.There are two kinds of e�e
ts: read e�e
ts and write e�e
ts.A read e�e
t spe
i�es a set read(pro
) of initial graph nodes a

essed by the pro
e-dure. It is used to ensure that the a

essibility 
ondition in Se
tion 3.4.3 is satis�ed.If the set of nodes denoted by read(pro
) is mapped to a node n whi
h is onstage inthe 
aller but is not an argument of the pro
edure 
all, a role 
he
k error is reportedat the 
all site.Write e�e
ts are used to modify 
aller's role graph to 
onservatively model thepro
edure 
all. A write e�e
t e1:f = e2 approximates Store operations within apro
edure. The expression e1 denotes obje
ts being written to, f denotes the �eldwritten, and e2 denotes the set of obje
ts whi
h 
ould be assigned to the �eld. Writee�e
ts are may e�e
ts by default, whi
h means that the pro
edure is free not toperform them. It is possible to spe
ify that a write e�e
t must be performed bypre�xing it with a \!" sign.Example 30 In Figure 5-2, the insert pro
edure inserts an isolated 
ell into theend of an a
y
li
 singly linked list. As a result, the role of the 
ell 
hanges to LN. Theinitial 
ontext de
lares parameter nodes ln and xn (whose initial roles are dedu
edfrom roles of parameters), and mentions anonymous LN node from a default 
opy ofthe role referen
e diagram RRD. The 
ode of the pro
edure is summarized with twowrite e�e
ts. The �rst write e�e
t indi
ates that the pro
edure may perform zero ormore Store operations to �eld next of nodes mapped to ln or LN in 
ontext(pro
).The se
ond write e�e
t indi
ates that the exe
ution of the pro
edure must perform aStore to the �eld next of xn node where the referen
e stored is either a node mappedonto anonymous LN node or null. 4E�e
ts also des
ribe assignments that pro
edures perform on the newly 
reatednodes. Here we adopt a simple solution of using a single summary node denoted NEW54
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pro
edure insert(l : L,x : IsolatedN ->> LN)nodes ln, xn;edges l-> ln, x-> xn,ln -next-> LN|null;effe
ts ln|LN . next = xn,! xn.next = LN|null;lo
al 
, p;{ p = l;
 = l.next;while (
!=null) {p = 
;
 = p.next;}p.next = x;x.next = 
;setRole(x:LN);} Figure 5-2: Insert Pro
edure for A
y
li
 Listto represent all nodes 
reated inside the pro
edure. We write nodes0(HIC) for the setnodes(HIC) [ fNEWg.Example 31 Pro
edure insertSome in Figure 5-3 is similar to pro
edure insertin Figure 5-2, ex
ept that the node inserted is 
reated inside the pro
edure. It istherefore referred to in e�e
ts via generi
 summary node NEW. 4We represent all may write e�e
ts as a set mayWr(pro
) of triples hnj; f; n0jiwhere n; n0j 2 nodes0(HIC) and f 2 F . We represent must write e�e
ts as a se-quen
e mustWrj(pro
) of subsets of the set K�1IC (i)� F � nodes0(HIC). Here 1 � j �mustWrNo(pro
).To simplify the interpretation of the de
lared pro
edure e�e
ts in terms of 
on-
rete reads and writes, we require the union [imustWri(pro
) to be disjoint fromthe set mayWr(pro
). We also require the nodes n1; : : : ; nk in a must write e�e
tn1j � � � jnk:f = e2 to be individual nodes. This allows strong updates when instanti-ating e�e
ts (Se
tion 5.3.2).5.1.3 Semanti
s of Pro
edure E�e
tsWe now give pre
ise meaning to pro
edure e�e
ts. Our de�nition is slightly 
ompli-
ated by the desire to 
apture the set of nodes that are a
tually read in an exe
utionwhile still allowing a 
ertain amount of observational equivalen
e for write e�e
ts.The e�e
ts of pro
edure pro
 de�ne a subset of permissible program tra
es inthe following way. Consider a 
on
rete heap H
 with role assignment �
 su
h that55
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pro
edure insertSome(l : L)nodes ln;edges l-> ln,ln -next-> LN|null;effe
ts ln|LN . next = NEW,NEW.next = LN|null;aux 
, p, x;{ p = l;
 = l.next;while (
!=null) {p = 
;
 = p.next;}x = new;p.next = x;x.next = 
;setRole(x:LN);} Figure 5-3: Insert Pro
edure with Obje
t Allo
ationhH
; �
i�0hHIC; �IC; KICi with graph homomorphism h0 from De�nition 28. Considera tra
e T starting from a state with heap H
 and role assignment �
. Extra
t thesubsequen
e of all loads and stores in tra
e T . Repla
e Load x=y.f by 
on
rete readread ox where ox is the 
on
rete obje
t referen
ed by x at the point of Load, andrepla
e Store x.f=y by a 
on
rete write ox:f = oy where ox is the obje
t referen
edby x and oy obje
t referen
ed by y at the point of Store. Let p1; : : : ; pk be thesequen
e of all 
on
rete read statements and q1; : : : ; qk the sequen
e of all 
on
retewrite statements. We say that tra
e T starting at H
 
onforms to the e�e
ts i� forall 
hoi
es of h0 the following 
onditions hold:1. h0(o) 2 read(pro
) for every pi of the form read o2. there exists a subsequen
e qi1 ; : : : ; qit of q1; : : : ; qk su
h that(a) exe
uting qi1 ; : : : ; qit on H
 yields the same result as exe
uting the entiresequen
e q1; : : : ; qk(b) the sequen
e qi1 ; : : : ; qit implements write e�e
ts of pro
edure pro
A typi
al way to obtain a sequen
e qi1 ; : : : ; qit from the sequen
e q1; : : : ; qk is to
onsider only the last write for ea
h pair hoi; fi of obje
t and �eld.We say that a sequen
e qi1 ; : : : ; qit implements write e�e
ts mayWr(pro
) andmustWri(pro
) for 1 � i � i0, i0 = mustWrNo if and only if there exists an inje
-tion s : f1; : : : ; i0g ! fi1; : : : ; itg su
h that56
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1. hh0(o); f; h0(o0)i 2 mustWri(pro
) for every 
on
rete write qs(i) of the form o:f =o0, and2. hh0(o); f; h0(o0)i 2 mayWr(pro
) for all 
on
rete writes qi of the form o:f = o0 fori 2 fi1; : : : ; itg n fs(1); : : : ; s(i0)g.Here h0(n) = h0(n) for n 2 nodes(H
) where H
 is the initial 
on
rete heap andh0(n) = NEW otherwise.It is possible (although not very 
ommon) for a single 
on
rete heap H
 to havemultiple homomorphisms h0 to the initial 
ontext HIC. Note that in this 
ase werequire the tra
e T to 
onform to e�e
ts for all possible valid 
hoi
es of h0. Thispla
es the burden of multiple 
hoi
es of h0 on pro
edure transfer relation veri�
ation(Se
tion 5.2) but in turn allows the 
ontext mat
hing algorithm in Se
tion 5.3.1 tosele
t an arbitrary homomorphism between a 
aller's role graph and an initial 
ontext.5.2 Verifying Pro
edure Transfer RelationsIn this se
tion we show how the analysis makes sure that a pro
edure 
onforms to itsspe
i�
ation, expressed as an initial 
ontext with a list of e�e
ts. To verify pro
eduree�e
ts, we extend the analysis representation from Se
tion 4.1. A non-error role graphis now a tuple hH; �;K; �; Ei where:1. � : nodes(H) ! nodes0(HIC) is initial 
ontext transformation that assigns aninitial 
ontext node �(n) 2 nodes(HIC) to every node n representing obje
ts thatexisted prior to the pro
edure 
all, and assigns NEW to every node representingobje
ts 
reated during pro
edure a
tivation;2. E � [imustWri(pro
) is a list of must write e�e
ts that pro
edure has performedso far.The initial 
ontext transformation � tra
ks how obje
ts have moved sin
e the begin-ning of pro
edure a
tivation and is essential for verifying pro
edure e�e
ts whi
h referto initial 
ontext nodes.We represent the list E of performed must e�e
ts as a partial map from the setK�1IC (i) � F to nodes0(HIC). This allows the analysis to perform must e�e
t foldingby re
ording only the last must e�e
t for every pair hn; fi of individual node n and�eld f .5.2.1 Role Graphs at Pro
edure EntryOur role analysis 
reates the set of role graphs at pro
edure entry point from the initial
ontext 
ontext(pro
). This is simple be
ause role graphs and the initial 
ontext havesimilar abstra
tion relations (Se
tions 4.1 and 5.1). The di�eren
e is that parametersin role graphs point to exa
tly one node, and parameter nodes are onstage nodes inrole graphs whi
h means that all their edges are \must" edges.Figure 5-4 shows the 
onstru
tion of the initial set of role graphs. First thegraph H0 is 
reated su
h that every parameter parami(pro
) referen
es exa
tly one57
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[[entry�℄℄ = nhH; �;K; �; Ei ���P : fpro
g � fparami(pro
)gi ! N;P � HICH0 = (HIC n fpro
g � param(pro
)�N) [ Pni = P (pro
; parami(pro
))H1 � H0H1 nH0 � fhn0; f; n00i j fn1; n2g \ fnigi 6= ;g8j : lo
alChe
k(nj; hH; �;Ki; nodes(H1))H1 n1k H2 n2k � � � npk H� = �ICK = KIC� = �ICE = ; oFigure 5-4: The Set of Role Graphs at Pro
edure Entryparameter node ni. Next graph H1 is 
reated by using lo
alChe
k to ensure thatparameter nodes have the appropriate number of edges. Finally, the instantiation isperformed on parameter nodes to ensure a
y
li
ity 
onstraints if the initial 
ontextdoes not make them expli
it already.Statement s Transition Constraintsx = y.f hH ℄ fpro
; x; nxg; �;K; �; Ei st=)hH ℄ fpro
; x; nfg; �;K; �; Ei hpro
; y; nyi; hny; f; nf i 2 H�(nf ) 2 read(pro
)x = y.f hH ℄ fpro
; x; nxg; �;K; �; Ei st=)?G hpro
; y; nyi; hny; f; nf i 2 H�(nf ) =2 read(pro
)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)hH ℄ fnx; f; nyg; �;K; �; Ei hpro
; x; nxi; hpro
; y; nyi 2 Hh�(nx); f; �(ny)i 2 mayWr(pro
)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)hH ℄ fnx; f; nyg; �;K; �; E 0i hpro
; x; nxi; hpro
; y; nyi 2 Hh�(nx); f; �(ny)i 2 [imustWri(pro
)E 0 = updateWr(E; h�(nx); f; �(ny)i)x.f = y hH ℄ fnx; f; nfg; �;K; �; Ei st=)?G hpro
; x; nxi; hpro
; y; nyi 2 Hh�(nx); f; �(ny)i =2 mayWr(pro
)[[imustWri(pro
)x = new hH ℄ fpro
; x; nxg; �;K; �; Ei st=)hH ℄ fpro
; x; nng; �;K; � 0; Ei nn fresh� 0 = � [nn 7! NEW℄updateWr(E; hn1; f; n2i) = E[hn1; fi 7! n2℄Figure 5-5: Verifying Load, Store, and New Statements5.2.2 Verifying Basi
 StatementsTo ensure that a pro
edure 
onforms to its transfer relation the analysis uses the initial
ontext transformation � to assign every Load and Store statement to a de
larede�e
t. Figure 5-5 shows new symboli
 exe
ution of Load, Store and New statements.58
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The symboli
 exe
ution of Load statement x=y.f makes sure that the node beingloaded is re
orded in some read e�e
t. If this is not the 
ase, an error is reported.The symboli
 exe
ution of the Store statement x.f=y �rst retrieves nodes �(nx)and �(ny) in the initial role graph 
ontext that 
orrespond to nodes nx and ny in the
urrent role graph. If the e�e
t h�(nx); f; �(ny)i is de
lared as a may write e�e
t theexe
ution pro
eeds as usual. Otherwise, the e�e
t is used to update the list E ofmust-write e�e
ts. The list E is 
he
ked at the end of pro
edure exe
ution.The symboli
 exe
ution of the New statement updates the initial 
ontext trans-formation � assigning �(nn) = NEW for the new node nn.The � transformation is similarly updated during other abstra
t heap operations.Instantiation of node n0 into node n0 assigns �(n0) = �(n0), split 
opies values of �into the new set of isomorphi
 nodes, and normalization does not merge nodes n1 andn2 if �(n1) 6= �(n2).5.2.3 Verifying Pro
edure Post
onditionsAt the end of the pro
edure, the analysis veri�es that �(ni) = postRi(pro
) wherehpro
; parami(pro
); nii 2 H, and then performs node 
he
k on all onstage nodesusing predi
ate nodeChe
k(n; hH; �;Ki; nodes(H)) for all n 2 onstage(H).At the end of the pro
edure, the analysis also veri�es that every performed e�e
tin E = fe1; : : : ; ekg 
an be attributed to exa
tly one de
lared must e�e
t. This meansthat k = mustWrNo(pro
) and there exists a permutation s of set f1; : : : ; kg su
h thates(i) 2 mustWri(pro
) for all i.5.3 Analyzing Call SitesThe set of role graphs at the pro
edure 
all site is updated based on the pro
eduretransfer relation as follows. Consider pro
edure pro
 
ontaining 
all site p 2 NCFG(pro
)with pro
edure 
all pro
0(x1; : : : ; xp). Let hHIC; �IC; KICi = 
ontext(pro
0) be the initial
ontext of the 
allee.Figure 5-6 shows the transfer fun
tion for pro
edure 
all sites. It has the followingphases:1. Parameter Che
k ensures that roles of parameters 
onform to the roles ex-pe
ted by the 
allee pro
0.2. Context Mat
hing (mat
hContext) ensures that the 
aller's role graphs rep-resent a subset of 
on
rete heaps represented by 
ontext(pro
0). This is done byderiving a mapping � from the 
aller's role graph to nodes(HIC).3. E�e
t Instantiation ( FX�! ) uses e�e
ts mayWr(pro
0) and mustWri(pro
0) inorder to approximate all stru
tural 
hanges to the role graph that pro
0 mayperform.4. Role Re
onstru
tion ( RR�!) uses �nal roles for parameter nodes and globalrole de
larations postRi(pro
0) to re
onstru
t roles of all nodes in the part of therole graph representing modi�ed region of the heap.59
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[[pro
0(x1; : : : ; xp)℄℄(G) =if 9G 2 G : :paramChe
k(G) then f?Ggelse try G1 = mat
hContext(G)if failed then f?Ggelse fG00 j hG; �i 2 G1haddNEW(G); �i FX�!hG0; �i RR�!G00gparamChe
k(hH; �;K; �; Ei) i�8ni : nodeChe
k(ni; G; o�stage(H) [ fnigi)ni are su
h that hpro
; xi; nii 2 HaddNEW(hH; �;K; �; Ei) =hH [ fn0g � F � fnullg;�[n0 7! unknown℄;K[n0 7! s℄;� [n0 7! NEW℄;Eiwhere n0 is fresh in HFigure 5-6: Pro
edure CallThe parameter 
he
k requires nodeChe
k(ni; G; o�stage(H)[fnigi) for the parameternodes ni. The other three phases are explained in more detail below.5.3.1 Context Mat
hingFigure 5-7 shows our 
ontext mat
hing fun
tion. The mat
hContext fun
tion takes aset G of role graphs and produ
es a set of pairs hG; �i where G = hH; �;K; �; Ei is arole graph and � is a homomorphism fromH toHIC. The homomorphism � guaranteesthat ��1(G) � ��10 (
ontext(pro
0)) sin
e the homomorphism h0 from De�nition 28 
anbe 
onstru
ted from homomorphism h in De�nition 22 by putting h0 = � Æ h. Thisimplies that it is legal to 
all pro
0 with any 
on
rete graph represented by G.The algorithm in Figure 5-7 starts with empty maps � = nodes(G) � f?g andextends � until it is de�ned on all nodes(G) or there is no way to extend it further. Itpro
eeds by 
hoosing a role graph hH; �;K; �; Ei and node n0 for whi
h the mapping �is not de�ned yet. It then �nds 
andidates in the initial 
ontext that n0 
an be mappedto. The 
andidates are 
hosen to make sure that � remains a homomorphism. Thea

essibility requirement|that a pro
edure may see no nodes with in
orre
t role|is enfor
ed by making sure that nodes in ina

essible are never mapped into nodesin read for the 
allee. As long as this requirement holds, nodes in ina

essible 
anbe mapped onto nodes of any role sin
e their role need not be 
orre
t anyway. Wegenerally require that the set ��1(n00) for individual node n00 in the initial 
ontext
ontain at most one node, and this node must be individual. In 
ontrast, there might60
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mat
hContext(G) = mat
h(fhG; nodes(G)� f?gi j G 2 Gg)mat
h : P(RoleGraphs� (N [ f?g)N)* P(RoleGraphs�NN )mat
h(�) =�0 := fhG; �i 2 � j ��1(?) 6= ;g;if �0 = ; then return �;hhH; �;K; �; Ei; �i := 
hoose �0;�0 = � n hhH; �;K; �; Ei; �i;paramnodes := fn j 9i : hpro
; xi; ni 2 Hg;ina

essible := onstage(H) n paramnodes;n0 := 
hoose ��1(?);
andidates := fn0 2 nodes(HIC) j(n0 =2 ina

essible and �IC(n0) = �(n0)) or(n0 2 ina

essible and n0 =2 read(pro
0))gThn0;f;ni2H�(n)6=? nn0 ��� hn0; f; �(n)i 2 HICoThn;f;n0i2H�(n)6=? nn0 ��� h�(n); f; n0i 2 HICo;if 
andidates = ; then fail ;if 
andidates = fn00g; K(n0) = s;KIC(n00) = i; ��1(n00) = ;then mat
h(�0 [ fhG0; �[n1 7! n00℄i j hH; �;K; �; Ei n1*n0G0g)else n00 := 
hoose fn0 2 
andidates j K(n0) = s or(K(n0) = i; ��1(n0) = ;)gmat
h(�0 [ hhH; �;K; �; Ei; �[n0 7! n00℄i);Figure 5-7: The Context Mat
hing Algorithm
61
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be many individual and summary nodes mapped onto a summary node. We relaxthis requirement by performing instantiation of a summary node of the 
aller if, atsome point, that is the only way to extend the mapping � (this 
orresponds to the�rst re
ursive 
all in the de�nition of mat
h in Figure 5-7).The algorithm is nondeterministi
 in the order in whi
h nodes to be mat
hedare sele
ted. One possible ordering of nodes is depth-�rst order in the role graphstarting from parameter nodes. If some nondeterministi
 bran
h does not su

eed, thealgorithm ba
ktra
ks. The fun
tion fails if all bran
hes fail. In that 
ase the pro
edure
all is 
onsidered illegal and ?G is returned. The algorithm terminates sin
e everypro
edure 
all lexi
ographi
ally in
reases the sorted list of numbers j�[nodes(H)℄j forhhH; �;K; �; Ei; �i 2 �.5.3.2 E�e
t InstantiationThe result of the mat
hing algorithm is a set of pairs hG; �i of role graphs andmappings. These pairs are used to instantiate pro
edure e�e
ts in ea
h of the rolegraphs of the 
aller. Figure 5-8 gives rules for e�e
t instantiation. The analysis �rstveri�es that the region read by the 
allee is in
luded in the region read by the 
aller.Then it uses map � to �nd the inverse image S of the performed e�e
ts. The e�e
tsin S are grouped by the sour
e n and �eld f . Ea
h �eld n:f is applied in sequen
e.There are three 
ases when applying an e�e
t to n:f :1. There is only one node target of the write in nodes(H) and the e�e
t is a mustwrite e�e
t. In this 
ase we do a strong update.2. The 
ondition in 1) is not satis�ed, and the node n is o�stage. In this 
ase we
onservatively add all relevant edges from S to H.3. The 
ondition in 1) is not satis�ed, but the node n is onstage i.e. it is aparameter node1. In this 
ase there is no unique target for n:f , and we 
annotadd multiple edges either as this would violate the invariant for onstage nodes.We therefore do 
ase analysis 
hoosing whi
h e�e
t was performed last. If thereare no must e�e
ts that a�e
t n, then we also 
onsider the 
ase where theoriginal graph is un
hanged.5.3.3 Role Re
onstru
tionPro
edure e�e
ts approximate stru
tural 
hanges to the heap, but do not provideinformation about role 
hanges for non-parameter nodes. We use the role re
onstru
-tion algorithm RR�! in Figure 5-9 to 
onservatively infer possible roles of nodes afterthe pro
edure 
all based on role 
hanges for parameters and global role de�nitions.Role re
onstru
tion �rst �nds the set N0 of all nodes that might be a

essed bythe 
allee sin
e these nodes might have their roles 
hanged. Then it splits ea
h node1Non-parameter onstage nodes are never a�e
ted by e�e
ts, as guaranteed by the mat
hingalgorithm. 62
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hhH; �;K; �; Ei; �i FX�!h?G; �i where � [��1[read(pro
0)℄℄ 6� read(pro
)hhH; �;K; �; Ei; �i FX�!Gt where � [��1[read(pro
0)℄℄ � read(pro
)hH; �;K; �; Ei n1;f1` G1 ` � � � nt;ft` GtS = fhn; f; n0i 2 H j h�(n); f; �(n0)i 2 mayWr(pro
0) [ [imustWri(pro
0)gfhn1; f1i; : : : ; hnt; ftig = fhn; fi j hn; f; n0i 2 SgSingle Write E�e
t Instantiation:hH1; �1; K1; �1; E1i n;f̀G0i�
ase 
ondition resultdeterministi
 e�e
t fn1 j hn; f; n1i 2 Sg = fn0g and9i : h�(n); f; �(n0)i 2 mustWri(pro
0) G0 = hH2; �1; K1; �1; E2iH2 = H1 n fhn; f; n1i j hn; f; n1i 2 H1g[fhn; f; n0igE2 = updateWr(E1; h�(n); f; �(n0)i)nondeterministi
 e�e
tfor non-parameters jfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro
0)n 2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg � mayWr(pro
) G0 = hH2; �1; K1; �1; E2iH2 = orem(H1)[fhn; f; n1i j hn; f; n1i 2 Sgjfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro
0)n 2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg 6� mayWr(pro
) G0 = ?Gnondeterministi
 e�e
tfor parameters jfn1 j hn; f; n1i 2 Sgj > 1 or9n1 : h�(n); f; �(n1)i 2 mayWr(pro
0)n =2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg � mayWr(pro
) G0 = hH2; �1; K1; �1; E2iH0 = H1 n fhn; f; n1i j hn; f; n1i 2 H1gH2 = H1 or H2 = H0 [ fhn; f; n1ighn; f; n1i 2 S:(fn1 j hn; f; n1i 2 Sg = fn1g and9i : h�(n); f; �(n0)i 2 mustWri(pro
0))n =2 o�stage(H)fh�(n); f; �(n1)i j hn; f; n1i 2 Sg 6� mayWr(pro
) G0 = ?Gorem(H1) = ( H1 n fhn; f; n0i j hn; f; n0i 2 H1g; if 9i 9n0 : h�(n); f; �(n0)i 2 mustWri(pro
0)H1; otherwiseFigure 5-8: E�e
t Instantiation
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hhH; �;K; �; Ei; �i RR�!hH 0; �0; K 0; � 0; E 0ihpro
; xi; nii 2 HN0 = ��1[read(pro
0)℄s : N0 � R! N where s(n; r) are all di�erent nodes fresh in H�0 = � n (N0 �R) [ fhs(n; r); ri j n 2 N0; r 2 Rgn(fnigi � R) [ fhni; postRi(pro
)igK 0(s(n; r)) = K(n)� 0(s(n; r)) = �(n)E 0 = EH0 = H n fhn1; f; n2i j n1 2 N0 or n2 2 N0g[ fhs(n1; r1); f; s(n2; r2)i j hn1; f; n2i 2 H; hr1; f; r2i 2 RRDg[ fhn1; f; s(n2; r2)i j hn1; f; n2i 2 H; h�IC(�(n1)); f; r2i 2 RRDg[ fhs(n1; r1); f; n2i j hn1; f; n2i 2 H; hr1; f; �IC(�(n2))i 2 RRDgH 0 = GC(H0) Figure 5-9: Call Site Role Re
onstru
tionn 2 N0 into jRj di�erent nodes �(n; r), one for ea
h role r 2 R. The node �(n; r)represents the subset of obje
ts that were initially represented by n and have roler after pro
edure exe
utes. The edges between nodes in the new graph are derivedby simultaneously satisfying 1) stru
tural 
onstraints between nodes of the originalgraph; and 2) global role 
onstraints from the role referen
e diagram. The nodes�(n; r) not 
onne
ted to the parameter nodes are garbage 
olle
ted in the role graph.In pra
ti
e, we generate nodes �(n; r) and edges on demand starting from parametersmaking sure that they are rea
hable and satisfy both kinds of 
onstraints.
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Chapter 6ExtensionsThis 
hapter presents extensions of the basi
 role system. The multislot extensionallows stati
ally unbounded number of aliases for obje
ts. Root variables allow sta
kframes to be treated as the sour
e of aliases in role de�nitions. Singleton roles al-low role de
larations to spe
ify that there is only one obje
t of a given role. Theextension for 
as
ading role 
hanges allows the analysis to verify more 
omplex role
hanges. The extension to partial roles allows mutually independent role propertiesto be spe
i�ed separately and then 
ombined.6.1 MultislotsA multislot hr0; fi 2 multislots(r) in the de�nition of role r allows any number ofaliases ho0; f; oi 2 H
 for �
(o0) = r0 and �
(o) = r. We require multislots multislots(r)to be disjoint from all sloti(r). To handle multislots in role analysis we relax the
ondition 5) in De�nition 22 of the abstra
tion relation by allowing h to map morethan one 
on
rete edge ho0; f; oi onto abstra
t edge hn0; f; ni 2 H terminating atan onstage node n provided that h�(n0); fi 2 multislots(�(n)). The nodeChe
k andexpansion relation � are then extended appropriately. Note that a role graph doesnot represent the exa
t number of referen
es that �ll ea
h multislot. The analysistherefore does not attempt to re
ognize a
tions that remove the last referen
e fromthe multislot. On
e an obje
t plays a role with a multislot, all subsequent roles thatit plays must also have the multislot.6.2 Root VariablesRoot variables allow roles to be de�ned not only by heap referen
es from other nodesbut also by referen
es from pro
edure variables. The root variables are treated likeheap referen
es for the purpose of role 
onsisten
y; they are referen
es from sta
kframe obje
ts. A pro
edure with root variables indu
es a role with �elds 
orrespond-ing to root variables and no slots.Example 32 Let us re
onsider the s
heduler example in Figure 1-2. We 
an require65
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the LiveHeader node to be referen
ed by the root variable pro
esses in the pro
e-dure main, and RunningHeader to be referen
ed by the root variable running in thefollowing way.role LiveHeader {fields first : LiveList | null;slots main.pro
esses;}role RunningHeader {fields next : RunningPro
 | RunningHeader,prev : RunningPro
 | RunningHeader;slots main.running,RunningHeader.next | RunningPro
.next,RunningHeader.prev | RunningPro
.prev;identities next.prev, prev.next;}pro
edure main()rootvar pro
esses : LiveHeader | null,running : RunningHeader | null;{ ... }This impli
itly generates a role de�nition for the main pro
edure.role main {fields pro
esses : LiveHeader,running : RunningHeader;}46.3 Singleton RolesSingleton roles are a simple way to improve the pre
ision of role spe
i�
ations androle analysis by indi
ating roles for whi
h there is only a single heap obje
t of thatrole. Singleton roles are often referred to from root variables.We say that the predi
ate singleton(r) holds for role r 2 R if j��1
 (r)j � 1 for everyvalid 
on
rete role assignment �
 of a heap 
reated by the program. In essen
e, thispredi
ate allows distinguishing between individual obje
ts and sets of obje
ts in rolede�nitions.Example 33 The intention of the de�nition in Figure 6-1 is to spe
ify a 
ir
ularsingly linked list with a header node. However, the spe
i�
ation in Figure 6-1 is toogeneral. For example, the graph in Figure 6-2 satis�es this spe
i�
ation. If we requiresingleton(H), then the graph in Figure 6-2 does not satisfy role de
larations any more.4 66
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role H { // header nodefields next : H | N;slots H.next | N.next;}role N { // internal nodefields next : H | N;slots H.next | N.next;} Figure 6-1: Roles for Cir
ular List
H

N

H

N

N

H

Figure 6-2: An Instan
e of Role De
larationsThe developer 
an spe
ify values of singleton predi
ate expli
itly. In some 
asesthe analysis alone 
an infer this information using the following rules:� pro
edure a
tivation re
ords are singleton if they are not members of a 
y
lethe 
all graph;� if the roles Rs 2 R are singleton and r0 2 R is su
h that one of the following
riteria holds:{ there exists f 2 F su
h that �eldf(r) � Rs, or{ there exists i su
h that sloti(r0) � Rs,then r0 is a singleton role as well.When analyzing programs with singleton roles, the role analysis maintains theinvariant that there is at most one node for ea
h singleton role r by preventingmultiple nodes with role r to go o�stage. When traversing data stru
tures, thesingleton 
onstraint eliminates 
ases in where two nodes with a singleton role arebrought onstage. 67
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role BufferNode {fields next : BufferNode | null;slots BufferNode.next | main.buffer;a
y
li
 next;}role WorkNode {fields next : WorkNode | null;WorkNode.next | main.work;a
y
li
 next;}pro
edure main()rootvar buffer : BufferNode | null,work : WorkNode | null;auxvar x, y;{ // 
reate buffer and work lists...// swap buffer and workx = buffer;y = work;buffer = y;work = x;setRoleCas
ade(x:WorkNode, y:BufferNode);} Figure 6-3: Example of a Cas
ading Role ChangeA natural generalization of singleton roles arises in the 
ontext of parametrizedroles [57℄. The extension to parametrized roles is orthogonal to the other aspe
ts ofroles and we do not 
onsider it in this thesis.6.4 Cas
ading Role ChangesIn some 
ases it is desirable to 
hange roles of an entire set of o�stage obje
ts withoutbringing them onstage. We use the statement setRoleCas
ade(x1 : r1; : : : ; xn : rn)to perform su
h 
as
ading role 
hange of a set of nodes. The need for 
as
ading role
hanges arises when roles en
ode rea
hability properties.Example 34 Pro
edure main in Figure 6-3 has two root variables, buffer and work,ea
h being a root for a singly linked a
y
li
 list. Elements of the �rst list haveBufferNode role and elements of the se
ond list have WorkNode role. At some pointpro
edure swaps the root variables buffer and work, whi
h requires all nodes in both68
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lists to 
hange the roles. These role 
hanges are triggered by the setRoleCas
adestatement. The statement indi
ates new roles for onstage nodes, and the analysis
as
ades role 
hanges to o�stage nodes. 4
hH; �;K; �; Ei st;hH; �0; K; �; Eist = setRoleCas
ade(x1 : r1; : : : ; xn : rn) ni : hpro
; xi; nii 2 H�0(ni) = ri�0(n) = �(n); n 2 onstage(H) n fnigiN0 = fn 2 o�stage(H) j 9n0 2 neighbors(n;H) : �(n0) 6= �0(n0)g8n 2 N0 : 
as
adingOk(n;H; �;K; �0)Figure 6-4: Abstra
t Exe
ution for setRoleCas
adeGiven a role graph hH; �;K;Ei 
as
ading role 
hange �nds a new valid role assign-ment �0 where the onstage nodes have desired roles and the roles of o�stage nodes areadjusted appropriately. Figure 6-4 shows abstra
t exe
ution of the setRoleCas
adestatement. Here neighbors(n;H) denotes nodes in H adja
ent to n. The 
ondition
as
adingOk(n;H; �;K; �0) makes sure it is legal to 
hange the role of node n from�(n) to �0(n) given that the neighbors of n also 
hange role a

ording to �0. This
he
k resembles the 
he
k for setRole statement in Se
tion 4.2.3. Let r = rho(n)and r0 = �0(n). Then 
as
adingOk(n;H; �;K; �0) requires the following 
onditions:1. hn; f; n1i 2 H implies �0(n1) 2 �eldf (r0);2. slotno(r0) = slotno(r) = k, and for every list hn1; f1; ni; : : : ; hnk; fk; ni 2 Hif there is a permutation p : f1; : : : ; kg ! f1; : : : ; kg su
h that h�(ni); fii 2slotpi(r), then there is a permutation p0 : f1; : : : ; kg ! f1; : : : ; kg su
h thath�(ni); fii 2 slotpi(r0);3. identity relations were already satis�ed or 
an be expli
itly 
he
ked: hf; gi 2identities(�0(n)) implies(a) hf; gi 2 identities(�(n)) or(b) for all hn; f; n0i 2 H: K(n0) = i, andif hn0; g; n00i 2 H then n00 = n;4. either a
y
li
(�0(n)) � a
y
li
(�(n)) ora
y
Che
k(n; hH; �0; Ki; o�stage(H)).In pra
ti
e there may be zero or more solutions that satisfy 
onstraints for a given
as
ading role 
hange. Sele
ting any solution that satis�es the 
onstraints is soundwith respe
t to the original semanti
s. A useful heuristi
 for sear
hing the solutionspa
e is to �rst explore bran
hes with as few roles 
hanged as possible. If no solutionsare found, an error is reported.6.5 Partial RolesIn this se
tion we extend our framework to allow 
ombining roles that spe
ify mutuallyindependent properties of obje
ts. First we generalize �eld and slot 
onstraints to69
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allow spe
ifying partial information about �elds and slots of ea
h role. We then givean alternative semanti
s of roles where ea
h node is assigned a set of roles. A pleasantproperty of this semanti
s of roles is that the sets of roles appli
able to ea
h �eld 
anbe de�ned as the greatest �xpoint of the re
ursive role de�nitions. We then sket
h anextension of 
ontext mat
hing and 
all site role re
onstru
tion that allows pro
eduresto be analyzed without spe
ifying the full set of roles of obje
ts in the initial rolegraphs.6.5.1 Partial Roles and Role SetsThis se
tion introdu
es partial roles. A partial role gives 
onstraints only for a subsetof �elds and slots. We use the term simple roles to refer to non-partial roles 
onsideredso far.Example 35 Consider the de�nition of a tree in Figure 6-5. This de�nition spe
i�esrole TR { // tree rootfields left : TN | null,right : TN | null;left,right slots ;}role TN { // tree nodefields left : TN | null,right : TN | null;left,right slots : TR.left | TR.right | TN.left | TN.right;} Figure 6-5: De�nition of a Treethat a data stru
ture is a tree along the left and right �elds, but does not 
onstrain�elds other than left and right. Similarly, the de�nition of a linked list in Figure 6-6 gives only requirements for the next �eld. Note how de�nition of LH spe
i�es apartial \negative" slot 
onstraint, namely the absen
e of a next �eld.A de�nition for a threaded tree, for example, 
an leverage the pre
eding rolede�nitions to de�ne the 
omposite data stru
ture.role LTN extends TN,LN { // linked tree nodefields data : Stored;}Every obje
t playing LTN role simultaneously plays TN and LN roles as well. In general,an obje
t playing more roles satis�es more 
onstraints. 4For partial roles, we 
hange the 
onvention that the �elds not mentioned in afields de
laration are always 
onstrained to be null. Instead, the absen
e of a70
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role LH { // list headerfields next : NL | null;next slots ;}role LN { // list nodefields next : LN | null;next slots LH.next | LN.next;} Figure 6-6: De�nition of a List�eld f implies no 
onstraints on the roles that �eld f referen
es. A slot 
onstraintfor a partial role r 
ontains an additional set s
ope(r) = ff1; : : : ; fkg of �elds thatdetermine the s
ope of the slot 
onstraints. A slot de
laration gives 
omplete aliasesfor referen
es along s
ope(r) �elds, but poses no requirements on aliases from other�elds.Partial role de�nitions 
an reuse previous role de�nitions using the extends key-word. We represent the extends relationships by the set of roles subroles(r) for ea
hrole r. A set S � R is 
losed if subroles(r) � S for every r 2 S.6.5.2 Semanti
s of Partial RolesTo give the semanti
s of partial roles we de�ne role-set assignment �s
 to assign a
losed set of roles to every obje
t. We say that a role assignment �
 is a 
hoi
e ofa role-set assignment �s
 i� �
(r) 2 �s
(r) for every role r 2 R. We �rst generalizelo
allyConsistent to take the role of the obje
t o independently of role assignment �
.This de�nition is identi
al to De�nition 2 ex
ept that the role of the obje
t o is rinstead of �
(o).De�nition 36 lo
allyConsistent(o;H
; �
; r) i� all of the following 
onditions are met.1) For every �eld f 2 F and ho; f; o0i 2 H
, �
(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 H
g be the set of all aliasesof node o. Then k = slotno(r) and there exists some permutation p of the setf1; : : : ; kg su
h that h�
(oi); fii 2 slotpi(r) for all i.3) If ho; f; o0i 2 H
, ho0; g; o00i 2 H
, andhf; gi 2 identities(r), then o = o00.4) It is not the 
ase that graph H
 
ontains a 
y
leo1; f1; : : : ; os; fs; o1 where o1 = o andf1; : : : ; fs 2 a
y
li
(r)We now de�ne the lo
al role-set 
onsisten
y as follows.71
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De�nition 37 lo
allyRSConsistent(o;H
; �s
) i� for every r 2 �s
(o) there exists a
hoi
e �
 of �s
 su
h that lo
allyConsistent(o;H
; �
; r). We say that a heap H
 is role-set 
onsistent for a role-set assignment �s
 if lo
allyRSConsistent(o;H
; �s
) for everyo 2 nodes(H
). We 
all su
h role-set assignment �s
 a valid role-set assignment.We similarly extend the de�nitions of 
onsisten
y for a given set of nodes from De�-nition 20.The following observations follow from De�nition 37:1. if �s
 is a valid role assignment, then j�s
(o)j � 1 for every obje
t o, otherwisethere would be no �
 whi
h is a 
hoi
e for �s
;2. if j�s
(o)j = 1 for all o 2 nodes(H
), then heap 
onsisten
y for partial roles isequivalent to heap 
onsisten
y for simple roles.6.5.3 Fixpoint De�nition of the Greatest Role AssignmentWe �rst show that the set of all valid role-set assignments has a least upper bound.We �rst de�ne a partial order on fun
tions from nodes(H
) to P(R).De�nition 38 �s
1 v �s
2 i� �s
1(o) � �s
2(o) for every o 2 H
.We then introdu
e the pointwise union.De�nition 39 (�s
1 t �s
2)(o) = �s
1(o) [ �s
2(o)The union of two 
losed role-sets is a 
losed role-set, so the merge of two role-setassignments is still a role-set assignment. Moreover, if both role-set assignments arevalid, the pointwise union is also a valid role-set assignment, as the following propertyshows.Property 40 Let �s
1 and �s
2 be valid role-set assignments for the heap H
. Then�s
1 t �s
2 is also a valid role assignment.The property holds be
ause every role assignment �
 whi
h is a 
hoi
e of �s
1 or a
hoi
e of �s
2 is also a 
hoi
e of �s
1 t �s
2.Be
ause there is a �nite number of role-set assignments, Property 40 implies theexisten
e of the greatest role-set assignment �sM
 whi
h is the merge of all valid roleassignments.De�nition 41 Let �s
1, . . . , �s
N be all valid role assignments for the heap H
. Wede�ne the greatest role assignment �sM
 as�sM
 = �s
1 t � � � t �s
N72
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De�nition 42 Let �s
 : nodes(H
) ! P(R). Then F (�s
) : nodes(H
) ! P(R) is ade�ned by F (�s
)(o) = fr 2 �s
(o) j subroles(r) � �s
(o) andthere exists a 
hoi
e �
 of �s
 su
h thatlo
allyConsistent(o;H
; �
; r)gProperty 43 The greatest role-set assignment for a 
on
rete heap H
 is a greatest�xpoint of fun
tion F .Proof. It is easy to see that F (�s
1) v F (�s
2) whenever �s
1 v �s
2. Also, F (�s
) v �s
and the empty role-set assignment �s
(o) = ; is a �xpoint of F .Let �s
0 be su
h that �s
0(o) = R for all o 2 H
. Consider the sequen
e F i(�s
0) fori � 0. There exists i0 su
h that F i(�s
0) = �s
� for i � i0 where �s
� is a �xpoint of F .Be
ause F (�s
�)(o) = �s
�(o) for ea
h o, it follows that �s
� is a valid role-set assignment.Moreover, if �s
 is any other valid role-set assignment, then �s
 v F i(�s
0) for every i, so�s
 v �s
�. We 
on
lude that the �xpoint �s
� is the greatest valid role assignment �sM
 .6.5.4 Expressibility of Partial RolesThe partial roles allow data stru
tures to be des
ribed 
ompositionally. Anotherni
e property of partial roles is that there is a 
anoni
al role-set assignment �sM
 .A drawba
k of 
onsidering only the greatest role-set assignment is that some datastru
ture 
onstraints are not expressible.Example 44 The set of 
y
les of even length 
an be des
ribed using the followingsimple role de�nitions.role Even {fields next : Odd;slots Odd.next;}role Odd {fields next : Even;slots Even.next;}No odd length 
y
le satis�es this role assignment. Ea
h even length 
y
le o1; : : : ; o2khas two role assignments �
1 and �
2, where �
1(o2i+1) = Odd and �
1(o2i) = Even,whereas �
2(o2i+1) = Even and �
2(o2i) = Odd.On the other hand, the same role de�nitions have unique greatest role assignment�s
 = �s
1 t �s
2, where �s
(o) = fEven; Oddg for all o. This role assignment is valid notonly for even length 
y
les, but also for odd length 
y
les. 4The 
onstraints that 
an be spe
i�ed by partial roles and role-set assignments aresimilar to 
onstraints that 
an be spe
i�ed using simple roles and role assignments.73
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In the absen
e of a
y
li
ity 
onstraints, given a set of partial role de�nitions, it ispossible to exhibit a set of simple role de�nitions whi
h 
apture the same 
onstraints.This 
onstru
tion introdu
es a simple role ea
h 
losed set of partial roles, similarto the 
onstru
tion showing the equivalen
e of deterministi
 and nondeterministi
�nite state automata [61℄ or deterministi
 and nondeterministi
 �nite tree automata[34, 15℄. Constru
tion is 
ompli
ated by the form of our slot 
onstraints, but 
anbe done by introdu
ing additional roles that simulate slot 
onstraint 
onjun
tion.(The ability to perform 
onjun
tion of slot 
onstraints is an easy 
onsequen
e of theequivalen
e of slot 
onstraints with the generalized slot 
onstraints in Se
tion A.1.)The 
onstru
tion 
ould also be performed for a
y
li
ity 
onstraints if we generalizedthem to spe
ify a family of sets of �elds and forbid 
y
les along paths with �elds fromea
h of the sets in the family.Even after performing this 
onstru
tion, it remains the fa
t that partial rolesindu
e additional partial order stru
ture, whi
h is not available in simple roles.6.5.5 Role SubtypingWe now 
onsider the problem of role subtyping at pro
edure 
all sites. A larger setof nodes for a node implies stronger 
onstraints for that node. We would then expe
ta pro
edure 
all to be legal when the 
aller's role-sets are supersets of role-sets ofthe initial 
ontext. The problem is that a larger set �s
(n), while implying a stronger
onstraint on the node n, implies weaker 
onstraint on the nodes adja
ent to n. Thefollowing example shows that the superset 
onditions on role-sets is in general notsuÆ
ient.Example 45 De�ne roles A and B as follows:role A {f slots A.f,B.f | A.f;}role B { }role C { }Consider the following role graph in the 
aller
AB B

A

f
f

f f

f

C

a
b

c

and assume that the 
allee has the following initial role graph.74
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B B

A

f
f

f f

f

C

a
b

c

Clearly there is a homomorphism � from the 
aller's role graph to the initial rolegraph su
h that �s1(n) � �s2(�(n)) for all nodes n. The following heap is an instan
eof the 
aller's role graph.
AB

A

B

B

C

f

f

f
f

a
b

c

However, it is not possible to assign sets of roles to obje
ts to make it an instan
e ofthe role graph in the initial 
ontext. 4The following property shows that a simple restri
tion on slot 
onstraints makesthe role-set in
lusion 
riterion valid.Property 46 Let hH; �s; Ki and hHIC; �sIC; KICi be role graphs and � : nodes(H) !nodes(HIC) a graph homomorphism su
h that:1. �s(n) � �sIC(�(n)) for all n 2 nodes(H);2. if hn1; f; n0i 2 H, r0 2 �sIC(�(n0)), r1 2 �s(n1), and hr1; fi 2 sloti(r0) for somei, then hr2; fi 2 sloti(r0) for some r2 2 �sIC(�(n1)).Let H
 be a 
on
rete heap su
h and �s
1 a valid role-set assignment for H
. Assume thath is a homomorphism from H
 to H su
h that �s
1(o) = �s(h(o)) for all o 2 nodes(H
).De�ne �s
2(o) = �sIC(�(h(o)))for all o 2 nodes(H
). Then �s
2 is also a valid role-set assignment for H
.75
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Proof. To show that �s
2 is a valid role-set assignment for H
, 
onsider any obje
to 2 nodes(H
) and one of its roles r0 2 �s
2(o). Be
ause r0 2 �s
2(o), identities anda
y
li
ity 
onstraints hold for o. We show that �eld and slot 
onstraints hold as well.To show that �eld 
onstraints of r0 hold, 
onsider any edge ho; f; o1i 2 H
. Thenhn; f; n1i 2 HIC where n = �(h(o)) and n1 = �(h(o1)). Be
ause HIC is a subgraph ofthe stati
 role diagram, �eldf(r0)\�sIC(n1) 6= ;, otherwise the edge hn; f; n1i would besuper
uous. Sin
e �s2(o1) = �sIC(n1) by de�nition of �s2, we have �eldf(r0) \ �s2(o1) 6= ;whi
h means that the �eld 
onstraint for f is satis�ed in H
.To show that slot 
onstraints of r0 hold, 
onsider any edge ho1; f; oi 2 H
. Be
ause�s
1 is a valid role assignment and r0 2 �s
1(o), there exists slot i and role r1 2 �s
1(o1)su
h that hr1; fi 2 sloti(r0). By the assumption 2), sin
e hh(o1); f; h(o)i 2 H, r0 2�sIC(h(o)) and r1 2 �s(h(o1)), there exists r2 2 �sIC(�(h(o1)) su
h that hr2; fi 2 sloti(r0).Sin
e �sIC(�(h(o1)) = �s
2(o1), it follows that the slot 
onstraint of o is satis�ed.The 
ondition 2) in Property 46 
an be repla
ed by a stronger but simpler 
ondi-tion.De�nition 47 We say that role r0 depends on r1 i� for some slot i, hr1; fi 2 sloti(r0)and there exists another slot j 6= i of role r0 su
h that hr2; fi 2 slotj(r0) for some roler2.Property 48 Let hH; �s; Ki and hHIC; �sIC; KICi be role graphs and � : nodes(H) !nodes(HIC) a graph homomorphism su
h that:1') �s(n) � �sIC(�(n)) for all n 2 nodes(H);2') if r1 2 �s(n) n �sIC(�(n)) for some n, and r0 depends on r1, then for all n0 2nodes(HIC), r0 =2 �sIC(n0).Then the 
ondition 2) of Property 46 is satis�ed.Proof. Let hn1; f; ni 2 H, r0 2 �sIC(n), and r1 2 �s(H) and hr1; fi 2 sloti(r0). Ifr1 2 �sIC(�(n)) then we 
an take r2 = r1 and the 
ondition 2) is satis�ed. Now assumer1 2 �s(n) n �sIC(�(n)). Sin
e r0 2 �sIC(n), by assumption 2'), r0 does not depend onr1. This means that i is the only slot of r0 that 
ontains the �eld f . Be
ause theedge h�(n1); f; �(n)i is in HIC, and HIC, it follows that hr2; fi 2 sloti(r0) for somer2 2 �sIC(n1). This means that the 
ondition 2) is satis�ed.Based on previous properties we 
an derive a 
ontext mat
hing algorithm thatallows role graphs in the 
all site to have larger sets of roles than nodes in the initial
ontext.In order to further in
rease the pre
ision of 
all site veri�
ation, we would liketo preserve the larger larger set of role graphs in the 
aller. This is possible be
ausepro
edure e�e
ts spe
ify whi
h obje
t �elds 
an be modi�ed during exe
ution of the
aller. The role re
onstru
tion algorithm for partial roles is similar to algorithm inFigure 5-9 ex
ept that it operates on sets of roles instead of individual roles. To76
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onsider how to preserve the wider set of roles, 
onsider a role r 2 �s(n) n �sIC(�(n)).The role re
onstru
tion splits n into a set of nodes ea
h of whi
h has assigned somerole-set S. In the absen
e of write e�e
ts the algorithm would need to generate nodeswith role-sets S that do not 
ontain r. If the write e�e
ts imply that the role r
annot be violated, then only role-sets S 
ontaining r need to be generated, whi
hin
reases the pre
ision and redu
es the size of role graphs after the pro
edure 
all.To 
ompute the set of roles that are preserved, role re
onstru
tion starts with setsp(n) = �s(n) n �sIC(�(n)) assigned to ea
h node n, and iteratively de
reases sets p(n)if a r 2 p(n) depends on a modi�ed �eld or previously eliminated role.We note that, similarly to multislots, partial roles allow a stati
ally unboundednumber of aliases. Whereas multislots expli
itly give permission for existen
e of
ertain aliases, partial roles allow all the existen
e of aliases not mentioned in the rolede�nition.
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Chapter 7Related WorkIn this 
hapter we present the relationship of our work with previous approa
hes toprogram analysis, 
he
king, and veri�
ation. We �rst 
ompare our work with thetypestate systems in
luding alias types [82℄ and 
al
ulus of 
apabilities [19℄. Wemention the previous work on aliasing 
ontrol for obje
t-oriented languages [46℄ andthe use of roles in obje
t-oriented modeling [70℄ and database programming languages[35℄. We 
ompare our role analysis with shape types [32℄, graph types [64℄, path matrixanalysis [36℄, and parametri
 shape analysis [78℄. We brie
y relate our approa
h tosome other interpro
edural analyses and examine our work in the 
ontext of programveri�
ation.7.1 Typestate SystemsA typestate system for stati
ally verifying initialization properties of values was pro-posed in [84, 83℄. The type state 
he
king was based on a linear two-pass typestate
he
king algorithm. In this typestate system, the state of an obje
t depends onlyon its initialization status. This system did not support aliasing of dynami
ally allo-
ated stru
tures. Aliasing 
auses problems for typestate-based systems be
ause thede
lared typestates of all aliases must 
hange whenever the state of the referred ob-je
t 
hanges. Fa
ed with the 
omplexity of aliasing, [84℄ resorted to a more 
ontrolledlanguage model based on relations. Requiring the relations to exist only between fullyinitialized obje
ts enables veri�
ation of initialization status of obje
ts in the presen
eof dynami
ally growing stru
tures. However, this solution is entirely inadequate forthe properties whi
h our role system veri�es. Our goal is to verify appli
ation-spe
i�
properties of obje
ts, and not obje
t initialization. Di�erent obje
ts stored in dynam-i
ally growing data stru
tures have di�erent appli
ation-spe
i�
 properties, whi
h oursystem 
aptures as di�erent roles. When obje
t's properties 
hange, our system ver-i�es that the 
hange is 
onsistent with all relations in whi
h the obje
t parti
ipates.Our te
hnique is appli
able regardless of whether the relations between obje
ts areimplemented as pointer �elds of re
ords or in some other way. The data-
ow analysis[76℄ performs veri�
ation of 
onstraints on relations and sets that implement dynami
stru
tures, but it does not perform instantiation operation like [78℄ and our role anal-79
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ysis, whi
h leads to the loss of pre
ision when analyzing destru
tive updates to datastru
tures.More re
ently proposed typestate approa
hes [20, 88, 82, 19℄ use linear types tosupport state 
hanges of dynami
ally allo
ated obje
ts. The goal of these systemsis to enfor
e safety properties of low-level 
ode, in parti
ular memory management.This is in 
ontrast with our system whi
h aims at verifying higher-level 
onstraintsin a language with a garbage 
olle
ted heap memory model. The 
apability 
al
ulus[19℄ allows tra
king the aliasing of memory regions by doing a form of 
ompile-timereferen
e 
ounting, but does not tra
k aliasing properties of individual obje
ts. Aliastypes [82℄ represent pre
isely the aliasing of individual obje
ts referen
ed by lo
alvariables, but do not support re
ursive data stru
tures. Re
ursive alias types [88℄ al-low spe
i�
ation of re
ursive data stru
tures as unfolding of basi
 elaboration steps.This allows des
riptions of tree-like data stru
tures with parent pointers, but doesnot permit approximating arbitrary data stru
tures. This property of re
ursive aliastypes is shared with shape types [32℄ and graph types [54℄ dis
ussed below. Anotherdi�eren
e 
ompared to our work is that these type systems present only a type 
he
k-ing, and not a type inferen
e algorithm, whereas our analysis performs role inferen
einside ea
h pro
edure. The appli
ation of these type systems to an imperative pro-gramming language Vault is presented in [20℄. Be
ause it is based on alias types and
apability 
al
ulus, Vault's type system 
annot approximate arbitrary data stru
-tures. The type system of Vault tra
ks run-time resour
es using unique keys. Tosimplify the type 
he
king, Vault requires the equality of sets of keys at ea
h programpoint. This is in 
ontrast to predi
ative data-
ow analyses su
h as role analysis, whi
htra
k the sets of possible aliasing relationships at ea
h program point. Our approa
hmakes the results of the analysis less sensitive to semanti
 preserving rearrangementsof statements in the program.Like [91, 92℄, our role analysis performs non-lo
al inferen
e of program propertiesin
luding the synthesis of loop invariants. The di�eren
e is that [91, 92℄ fo
us on lin-ear 
onstraints between integers and handle re
ursive data stru
tures 
onservatively,whereas we do not handle integer arithmeti
 but have a more pre
ise representationof the heap that 
aptures the 
onstraints between obje
ts parti
ipating in multipledata stru
tures.7.2 Roles in Obje
t-Oriented ProgrammingIt is widely re
ognized that 
onventional me
hanisms in obje
t-oriented programminglanguages do not provide suÆ
ient 
ontrol over obje
t aliasing. As a result, it is notpossible to prevent representation exposure [21℄ for linked data stru
tures. As someprevious systems, our roles 
an be used to avoid representation exposure, even thoughthis is not the only purpose of roles.Islands [46℄ were designed to help reasoning about obje
t-oriented programs. Anisland is a set of obje
ts dominated by a bridge obje
t in the graph representing theheap. To keep tra
k of aliasing, [46℄ introdu
es unique and free variables with referen
e
ounts zero and one, respe
tively. It also de�nes a destru
tive read operation whi
h80
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an be used to pass free obje
ts into pro
edures. Roles 
an also be used to enfor
ethe invariant that an obje
t dominates a set of obje
ts rea
hable along a given set of�elds by spe
ifying slot 
onstraints that prevent aliases from obje
ts outside the datastru
ture. Our slot 
onstraints substantially generalize unique and free variables. Ourrole analysis uses pre
ise shape analysis te
hniques, whi
h is in sharp 
ontrast withpurely synta
ti
 rules of [46℄.Balloon types [4℄ is another system that supports en
apsulation. It requires min-imal program annotations. The en
apsulation in balloon types is enfor
ed usingabstra
t interpretation. The analysis representation re
ords rea
hability status be-tween obje
ts referen
ed by variables and relationship of these obje
ts with 
lustersof obje
ts. In most 
ases our role analysis is more pre
ise than [4℄ be
ause we tra
kthe aliasing properties of obje
ts in re
ursive data stru
tures, and not only propertiesof paths between obje
ts.Ownership types [14, 66℄ introdu
e the notion of obje
t ownership to preventrepresentation exposure. In 
ontrast to the type system [14℄ where the owner of anobje
t is �xed, our role analysis allows the obje
ts to 
hange the data stru
ture.Furthermore, an obje
t in our system 
an be simultaneously a member of multipledata stru
tures, and the role analysis veri�es the movements of obje
ts spe
i�ed inpro
edure interfa
es.The obje
t-oriented 
ommunity has also be
ome aware of the bene�ts of the sys-tems where the 
lass of an obje
t 
hanges over the 
ourse of the 
omputation. Predi-
ate 
lasses [11℄ des
ribe obje
ts whose 
lass depends on values of arbitrary predi
ates.The system [11℄ 
omputes the values of predi
ates at run-time and does not attemptto stati
ally infer values of these predi
ates, leaving to the user even the responsibilityof ensuring the disjointness of predi
ates for in
omparable 
lasses. One of the featuresof predi
ate 
lasses is a dynami
 dispat
h based on the 
urrent 
lass of the obje
t.In 
ontrast, we are proposing a a sele
ted family of heap 
onstraints and a stati
 roleanalysis that keeps tra
k of these 
onstraints. Our role system does not have dynami
dispat
h. Instead, the de
lared roles of parameters de�ne a pre
ondition on a pro
e-dure 
all. This pre
ondition 
hanges the operations appli
able for an obje
t based onthe stati
ally 
omputable information about the dynami
 state of the obje
t. Finally,[11℄ does not attempt to de�ne the state of an obje
t based on obje
t's aliases, whi
his the 
entral idea of our approa
h. Even with the great freedom gained by giving upthe stati
 
he
king of 
lasses, systems like [11℄ 
annot verify invariants expressed withour slot 
onstraints; this would in general require adding additional instrumentation�elds that tra
k the inverse referen
es.Dynami
 obje
t re-
lassi�
ation [26℄ presents a system 
loser to the 
onventional
lass-based languages, with method invo
ation implemented through double dynami
dispat
h. The proposal [26℄ does not stati
ally analyze heap 
onstraints. The work[93℄ des
ribes a system inspired by a knowledge based reasoning system. The obje
tre-
lassi�
ation in [93℄ is also implemented by the run-time system. Other approa
hespropose using design patterns to over
ome the absen
e of language support for dy-nami
ally 
hanging 
lasses [33, 29, 40, 86℄.The term \role" as used in obje
t-oriented modeling and obje
t-oriented database
ommunities is di�erent from our 
on
ept of roles. A role of an obje
t in these systems81
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does not 
apture obje
t's aliasing properties and other heap 
onstraints. In [70℄, roledenotes the purpose of an obje
t in a 
ollaboration [86℄ or a design pattern. Our
on
ept of roles 
aptures the asso
iations between obje
ts in a pattern by spe
ifyingreferen
es that originate or terminate at that obje
t. As in our system, the role of anobje
t in [70℄ 
hanges over time, and an obje
ts 
an play multiple roles simultaneously,whi
h 
orresponds to our partial roles. Our role system ensures the 
onforman
e ofthese design 
on
epts with the a
tual implementation, improving the reliability ofthe appli
ation. In the database programming language Fibona

i [35, 3℄ ea
h obje
tplays multiple roles simultaneously. The interfa
e of an obje
t depends on the rolethrough whi
h the obje
t is a

essed. This is in 
ontrast to our role system where therole is a stru
tural property of an obje
t. As in most other database implementations,the system [3℄ 
he
ks the in
lusion and 
ardinality 
onstraints on asso
iations at run-time, unlike our stati
 analysis.7.3 Shape AnalysisThe pre
ision of our role analysis for tra
king referen
es between heap obje
ts is
losest to the pre
ision of the shape analysis and veri�
ation te
hniques su
h as [78,32, 54, 36℄. Whereas these systems fo
us on analyzing a single data stru
ture, ourgoal is to analyze intera
tions between multiple data stru
tures. This is re
e
ted inour 
hoi
e of the properties to analyze. In parti
ular, the slot 
onstraints tra
ked byour role analysis are a natural generalization of the sharing predi
ate in [78℄ and 
anbe used both to re�ne the des
riptions of data stru
ture nodes and to spe
ify themembership of obje
ts in multiple data stru
tures.Shape Types [32℄ is a system for ensuring that the program heap 
onforms to a
ontext-free graph grammar [27, 73℄. As a graph des
ription formalism, 
ontext-freegraph grammars are in
omparable to roles. On the one hand, graph grammars 
an-not des
ribe an approximation of sparse matri
es or spe
ify parti
ipation of obje
tsin multiple data stru
tures. On the other hand, the nonparametrized role systempresented in this thesis does not in
lude 
onstraints su
h as \a node must have a selfloop". We 
ould express su
h 
onstraints using roles parametrized by obje
ts. Theproblem of temporary violations of heap invariants is 
ir
umvented in [32℄ by usinghigh-level graph rewrite rules 
alled rea
tions [30℄ as part of the implementation lan-guage. The model [32℄ does not support nested rea
tions on the same data stru
tureor pro
edure 
alls from rea
tions. In 
ontrast, the model of onstage and o�stagenodes 
an be dire
tly applied to a Java-like language, and gives more 
exibility tothe programmer be
ause roles 
an be violated in one part of data stru
ture whileinvoking a pro
edure on disjoint part of the same data stru
ture. There is no sup-port for pro
edure spe
i�
ations in [32℄. While simple pro
edures might be des
ribedpre
isely as rea
tions, for larger pro
edures it is ne
essary to use approximations tokeep pro
edure summaries 
on
ise. Our system a
hieves this goal by using e�e
ts asnodeterministi
 pro
edure spe
i�
ations that enable 
ompositional interpro
eduralanalysis.Graph types and the pointer assertion logi
 [54, 52, 64℄ are heap invariant des
rip-82
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tion languages based on monadi
 se
ond-order logi
 [85, 17, 55℄. In these systems,ea
h graph type data stru
ture must be represented as a spanning tree with addi-tional pointer �elds [64℄ 
onstrained to denote exa
tly one target node. If a datastru
ture is expressible in this way, the system [64℄ 
an verify strong properties aboutit, an example is manipulation of a threaded tree. Be
ause of 
onstraints on pointer�elds, however, it is not possible to approximate data stru
tures su
h as trees with apointer to the last a

essed leaf, skip lists, or sparse matri
es. This restri
tion alsomakes it impossible to des
ribe obje
ts that move between data stru
tures while beingmembers of multiple data stru
tures simultaneously. The moving obje
ts 
annot bemade part of any ba
kbone be
ause their membership in data stru
tures 
hanges overtime. The veri�
ation of programs in [64℄ is based on loop invariants. This makes thete
hnique naturally modular and hen
e no spe
ial me
hanism is needed for interpro-
edural analysis. Be
ause the logi
 is se
ond order, the e�e
ts of the pro
edure 
anbe spe
i�ed by referring to the sets of nodes a�e
ted by the pro
edure. The problemwith this approa
h is the 
omplexity of loop invariants that des
ribe the intermediatereferen
ing relationships. In 
ontrast, our role analysis uses �xpoint 
omputation toe�e
tively infer loop invariants in the form of sets of role graphs and uses pro
eduresas a unit of a 
ompositional interpro
edural analysis.Like shape analysis te
hniques [12, 36, 77, 78℄, we have adopted a 
onstraint-basedapproa
h for des
ribing the heap. The 
onstraint based approa
h allows us to handlea wider range of data stru
tures while potentially giving up some pre
ision.The path matrix approa
hes [37, 36℄ have been used to implement eÆ
ient in-terpro
edural analyses that infer one level of referen
ing relationships, but are notsuÆ
iently pre
ise to tra
k must aliases of heap obje
ts for programs with destru
tiveupdates of more 
omplex data stru
tures.The ADDS data stru
ture des
ription language [49℄ uses de
larations of uniquepointers and independent data stru
ture dimensions to 
ommuni
ate data stru
turesinvariants. Later systems [50, 45℄ repla
e these 
onstraints with rea
hability axioms.None of these systems has a 
on
ept of a role whi
h depends on aliasing of an obje
tfrom other obje
ts. These systems use sound te
hniques to apply the data stru
tureinvariants for parallelization and general dependen
e testing but do not verify thatthe data stru
ture invariants are preserved by destru
tive updates of data stru
tures[48℄.The use of the instantiation relation in role analysis is analogous to the material-ization operation of [77, 78℄. The shape analysis [77, 78℄ uses abstra
t interpretation[18℄ to 
ompute the invariants that the program satis�es at ea
h program point. Thevalues of invariants are stored as 3-valued models for the user-supplied instrumen-tation predi
ates. In 
ontrast, our analysis representation is designed to verify aparti
ular role programming model with onstage and o�stage nodes. Role graphs use\may" interpretation of edges for o�stage nodes and \must" interpretation of edgesadja
ent to onstage nodes. The abstra
tion relation is based on graph homomorphismand it is not ne
essarily a fun
tion, so there is no unique best abstra
t transformeras in the abstra
t interpretation frameworks. Our role analysis 
an thus 
reate thesummary nodes with di�erent rea
hability predi
ates on demand, depending on thebehavior of the program. Next, the possibility of having multiple role assignments83
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with stati
 analysis based on the instrumented semanti
s allows us to 
apture 
ertainproperties of obje
ts that depend not only on the 
urrent state of the heap but alsoon the 
omputation history. Rea
hability properties in our role analysis are derivedfrom the role graph instead of being expli
itly stored as instrumentation predi
ates.The advantage of our approa
h is that it naturally handles a 
lass of rea
habilitypredi
ates, without requiring predi
ate update formulae. Our approa
h thus avoidsthe danger of a developer supplying in
orre
t predi
ate update formulae and thereby
ompromising the soundness of the analysis. A disadvantage of our approa
h is thatit does not give must rea
hability information for paths 
ontaining several types of�elds where nodes have multiple aliases from those �elds. The reason why we 
anre
over rea
hability for e.g. tree-like data stru
tures is that the slot 
onstraint in arole whi
h labels a summary node guarantees the existen
e of the parent for ea
hnode in the path. Our role analysis handles a
y
li
ity by using roles to store thea
y
li
ity assumptions for nodes in re
ursive data stru
tures. A
y
li
ity assumptionsare instantiated using the the split operation. Our split operation a
hieves a similargoal to the fo
us operation of [78℄. However, the generi
 fo
us algorithm of [60℄ 
annothandle the rea
hability predi
ate whi
h is needed for our split operation. This is be-
ause it 
onservatively refuses to fo
us on edges between two summary nodes to avoidgenerating an in�nite number of stru
tures. Rather than requiring de�nite values forrea
hability predi
ate, our role analysis splits a

ording to rea
hability properties inthe abstra
t role graph, whi
h illustrates the 
exibility of the homomorphism-basedabstra
tion relation.Type inferen
e algorithms for dynami
ally typed fun
tional languages [2, 10℄ havethe ability to stati
ally approximate the values of types in higher order languages.These systems usually work with purely fun
tional subsets of fun
tional languagesand do not 
onsider the issues of aliasing.7.4 Interpro
edural AnalysesA pre
ise interpro
edural analysis [72℄ extends the shape analysis te
hniques to treata
tivation re
ords as dynami
ally allo
ated stru
tures. The approa
h also e�e
tivelysynthesizes an appli
ation-spe
i�
 set of 
ontexts. Our approa
h di�ers in that ituses a less pre
ise but more s
alable treatment of pro
edures. It also uses a 
ompo-sitional approa
h that analyzes ea
h pro
edure on
e to verify that it 
onforms to itsspe
i�
ation.Interpro
edural 
ontext-sensitive pointer analyses [90, 38, 13℄ typi
ally 
omputepoints-to relationships by 
a
hing generated 
ontexts and using �xpoint 
omputationinside strongly 
onne
ted 
omponents of the 
all graph. Be
ause our analysis tra
ksmore detailed information about the heap, we have 
hosen to make it 
ompositionalat the level of pro
edures. Our analysis a
hieves 
ompositionality using pro
eduree�e
ts, whi
h are also useful do
umentation for the pro
edure. Like [92℄ our interpro-
edural analysis 
an apply both may and must e�e
ts, but our 
ontexts are generalgraphs with summary nodes and not trees.The system [43℄ introdu
es an annotation language for optimizing libraries. The84
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language des
ribes pro
edure interfa
es whi
h enable optimization of programs thatuse matrix operations. The supplied fun
tion annotations are not veri�ed for the
onforman
e with pro
edure implementations. In 
ontrast, our goal is to analyzelinked data stru
tures to verify heap invariants; it is therefore essential that our roleanalysis uses sound te
hniques for both e�e
t veri�
ation and e�e
t instantiation.Our e�e
ts are more spe
i�
 and pre
ise than e�e
ts in [53℄; as a result they arenot 
ommutative. Both veri�
ation and instantiation of our e�e
ts require spe
i�
te
hniques that pre
isely keep tra
k of the 
orresponden
e between the initial heapof a pro
edure and the heap at ea
h program point. Our e�e
t appli
ation rulesimplement a form of e�e
t masking. If there are no write e�e
ts with the NEW asa target and the sour
e other than NEW, the role graphs in the 
aller will not bea�e
ted.7.5 Program Veri�
ationWe 
an view our role analysis as one 
omponent of a general program veri�
ationsystem. The role analysis 
onservatively attempts to establish a spe
i�
 
lass of heapinvariants, but does not tra
k other program properties. Verifying data stru
tureinvariants is important be
ause the knowledge of these invariants is 
ru
ial for rea-soning about the behavior of programs with dynami
ally allo
ated data stru
tures,whi
h is generally 
onsidered diÆ
ult. The diÆ
ulty of reasoning with dynami
allyallo
ated data stru
tures is indi
ated by some existing systems that verify propertiesof interfa
es but la
k automati
 veri�
ation of 
onforman
e between interfa
e and im-plementation [42℄, and systems that give up soundness [28, 21℄. Advan
es in reasoningabout linked data stru
tures [71, 51℄ might be a useful starting point for veri�
ationtools, although eÆ
ient manipulation of properties in veri�
ation tools results in dif-ferent representation requirements than manual reasoning. A 
ombination of model
he
king [47℄ and sound automati
 model extra
tion [5℄ might be an appropriate im-plementation te
hnique for verifying program properties, but the appli
ability of thisapproa
h for verifying heap invariants remains to be proven.
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Chapter 8Con
lusionWe proposed two key ideas: aliasing relationships should determine, in large part,the state of ea
h obje
t, and the type system should use the resulting obje
t states asits fundamental abstra
tion for des
ribing pro
edure interfa
es and obje
t referen
-ing relationships. We presented a role system that realizes these two key ideas, anddes
ribed an analysis algorithm that 
an verify that the program 
orre
tly respe
tsthe 
onstraints of this role system. The result is that programmers 
an use roles fora variety of purposes: to ensure the 
orre
tness of extended pro
edure interfa
es thattake the roles of parameters into a

ount, to verify important data stru
ture 
onsis-ten
y properties, to express how pro
edures move obje
ts between data stru
tures,and to 
he
k that the program 
orre
tly implements 
orrelated relationships betweenthe states of multiple obje
ts. We therefore expe
t roles to improve the reliabilityof the program and its transparen
y to developers and maintainers. By ensuringthat the program 
onforms to the design 
onstraints expressed in role de�nitions,role analysis makes design information available to the 
ompilation framework. Thisenables a range of high-level program transformations su
h as automati
 distribution,parallelization, and memory management.
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Appendix ADe
idability Properties of RolesThis 
hapter presents some further results about properties of roles. The �rst se
-tion proves de
idability of the satis�ability problem for roles with only �eld and slot
onstraints. The se
ond se
tion proves unde
idability of the impli
ation problem forroles.A.1 Roles with Field and Slot ConstraintsIn this se
tion we 
losely examine more 
losely properties of roles de�ned using solely�eld and slot 
onstraints. We ignore identity and a
y
li
ity 
onstraints in this andthe following se
tion.We show that we 
an use more general form of slot 
onstraints without 
hangingthe expressive power of roles. We then show how the generalized slot 
onstraints
an entirely repla
e the �eld 
onstraints, whi
h means that these 
onstraints are notstri
tly ne
essary on
e the full set of role de�nitions is given. Finally we show de
id-ability of the satisfa
tion problem for a set of roles 
ontaining only slot 
onstraints.A.1.1 Forms of Slot ConstraintsThe parti
ular form of our slot 
onstraints introdu
ed in Se
tion 2.1.2 may seem some-what arbitrary. In this se
tion we introdu
e a more general form of slot 
onstraintsand show that it 
an be redu
ed to our original role 
onstraints. This observationgives insight into the nature of slot 
onstraints and is used in further se
tions.De�nition 49 A generalized slot 
onstraint for role r, denoted gslot(r), is a list
1; : : : ; 
n of in
oming 
on�gurations. Ea
h in
oming 
on�guration 
s is a list ofpairs hrs1; fs1i; : : : ; hrsqs; fsqsi 2 R � F where qs is the length of 
s.By abuse of notation, we write hrj; fji 2 
s if hrj; fji is a member of the list 
s where
s represents the in
oming 
on�guration.In addition to the role assignment �
 : nodes(H
)! R, we introdu
e an in
oming
on�guration assignment � : nodes(H
) ! N . For ea
h node o, the in
oming 
on�g-uration assignment sele
ts an in
oming 
on�guration 
�(o) of the the role �
(o). Thelo
al 
onsisten
y is then de�ned as follows.89
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De�nition 50 lo
allyConsistent(o;H
; �
; �) holds for generalized roles i� the follow-ing 
onditions are met. Let r = �
(o).1) For every �eld f 2 F and ho; f; o0i 2 H
, �
(o0) 2 �eldf(r).2) Let fho1; f1i; : : : ; hok; fkig = fho0; fi j ho0; f; oi 2 H
g be the set of all aliases ofnode o and s = �(o). Then k = qs and there exists a permutation p of the setf1; : : : ; kg su
h that h�
(opi); fpii = hrsi; fsii for 1 � i � k where hrsi; fsii is thei-the element of the list in in
oming 
on�guration 
s.We say that the pair h�
; �i of role assignment and in
oming 
on�guration assignmentis valid for H
 i� lo
allyConsistent predi
ate holds for all nodes o 2 nodes(H
); theheap H
 is 
onsistent if there exists a valid pair h�
; �i. A nonempty heap 
onsistentwith a given set of role de�nition is 
alled a model for the role de�nitions.A.1.2 Equivalen
e of Original and Generalized SlotsOur original slot 
onstraints sloti(r) for 1 � i � k where k = slotno(r) 
an berepresented as generalized slot 
onstraints with a list of all in
oming 
on�gurations
 = hr1; f1i; : : : ; hrk; fki for hri; fii 2 sloti(r), 1 � i � k. This representation is adire
t 
onsequen
e of De�nitions 50 and 2.Conversely, given a set of role de�nitions with generalized slots, we 
an 
onstru
ta set of role de�nitions with original slots as follows. Introdu
e a role r=
 for ea
hin
oming 
on�guration 
 of role r with generalized slot 
onstraint. Let origRoles(r)denote the set of new roles r=
 for all in
oming 
on�gurations 
 of r. De�ne �eld andslot 
onstraints for r=
 as follows:�eldf(r=
) = [forigRoles(r0) j r0 2 �eldf(r)gsloti(r=
) = fhri=
0; fii j 
0 is an in
oming 
on�guration of rigwhere 
 = hr1; f1i; : : : ; hrk; fki. Let role assignment �
 assign roles with general-ized slots to obje
ts and � be the in
oming 
on�guration assignment su
h thatlo
allyConsistent predi
ate holds for all heap obje
ts. De�ne the assignment of originalroles by �0
(o) = �
(o)=�(o)Then lo
allyConsistent predi
ate holds for the �0
 assigning original roles to obje
ts.We will use the generalized role 
onstraints to establish the de
idability of thesatis�ability problem. We �rst show how to eliminate �eld 
onstraints.A.1.3 Eliminating Field ConstraintsIn this se
tion we argue that the �eld 
onstraints are mostly subsumed by slot 
on-straints if the entire set of role de�nitions is given. The 
onstraint r0 =2 �eldf (r) 
anbe spe
i�ed as hr; fi =2 sloti(r0) for all slots i in the original slot 
onstraints. In thegeneralized slot 
onstraints this 
onditions is spe
i�ed by making sure that hr; fi isnot a member of any of the in
oming 
on�gurations 
 of role r0. In order to allow this90
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onstru
tion to work for null referen
es, we introdu
e multislot de
laration for nullRrole by de�ning hr; fi 2 multislots(nullR) i� nullR 2 �eldf (r).After this transformation, the �eld de
larations will be satis�ed whenever (gener-alized) slot 
onstraints and nullR multislot 
onstraint are satis�ed. In the sequel wetherefore ignore the �eld 
onstraints.A.1.4 De
idability of the Satis�ability ProblemIn this se
tion we show that is is de
idable to determine if a given set of role de�nitions(
ontaining only �eld and slot 
onstraints) has a model. We show how to redu
e thisquestion to the solvability of an integer linear programming problem.Assume a set of role de�nitions for roles R = fr1; : : : ; rng. Let H
 be a 
on
reteheap, �
 a role assignment and � an in
oming 
on�guration assignment. De�ne thefollowing nonnegative integer variables. For every i, where 1 � i � n, let xi be thenumber of nodes with role ri:xi = jfo 2 nodes(H
) j �(o) = rigjLet yjs be the number of nodes with role �
(rj) for whi
h � sele
ts the in
oming
on�guration 
s: yjs = jfo 2 nodes(H
) j �(o) = rj; �(o) = 
sgjWe also introdu
e the values nfi denoting the number of null referen
es from obje
tswith role ri along the �eld f :nfi = jfho; f; nulli 2 H
 j �
(o) = rigjAssume that lo
allyConsistent predi
ate holds for all obje
ts o 2 nodes(H
). Bypartitioning the set of obje
ts �rst by roles and then by in
oming 
on�gurations ofea
h role, we 
on
lude that the following equations hold for 1 � j � n:qjXs=1 yjs = xj (A.1)Next, let us 
ount for ea
h role ri and ea
h �eld f 2 F , the number of f -referen
esfrom obje
ts in ��1
 (ri). We assumed that ea
h obje
t has the �eld f , so 
ountingthe sour
e of these referen
es yields xi. Out of these, nfi are null referen
es, andthe remaining ones �ll the slots of obje
ts with in
oming 
on�gurations that 
ontainhri; fi. We 
on
lude that for ea
h f 2 F and 1 � i � n the following linear equationholds: xi = nfi + Xhri;fi2
s yjs (A.2)Finally, for all hri; fi =2 multislots(nullR), we havenfi = 0 (A.3)91
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We 
all equations A.1, A.2, and A.3 the 
hara
teristi
 equations of role 
onstraints.We 
on
luded that 
hara
teristi
 equations hold for ea
h valid role and in
oming
on�guration assignment. We now argue that a nontrivial solution of these equationsimplies the existen
e of a heap H
, the role assignment �
 and in
oming 
on�gurationassignment � su
h that lo
allyConsistent predi
ate is satis�ed for all obje
ts of theheap.Assume that there is a nontrivial solution of the 
hara
teristi
 equations. Con-stru
t a heap H
 with N nodes where N = Pi=1 xi. Partition the nodes of the heapinto n 
lasses and assign �
(o) = ri for nodes in 
lass i, su
h that the de�nition ofxi is satis�ed for every i. This is possible by the 
hoi
e of N . Next, partition ea
h
lass ��1
 (ri) into disjoint sets, one set for ea
h in
oming 
on�guration, and assign�(o) = 
s su
h that the de�nitions of yjs are satis�ed. This is always possible be
auseequation A.1 holds. Next, add edges to graph H
 so that slot 
onstraints are satis�ed.This 
an be done by a simple greedy algorithm whi
h adds one edge at a time so thatit does not violate any slot 
onstraints. This 
onstru
tion is guaranteed to su

eedbe
ause of equation A.2. The 
ondition A.3 guarantees that the resulting graph nullreferen
es will be present only for the �elds for whi
h they are allowed. The result isa heap H
 
onsistent with the role de�nitions.The next theorem follows dire
tly from the previous argument and the de
idabilityof the integer linear programming problem.Theorem 51 It is de
idable to determine if there exists a model for a given set ofrole de�nitions.In addition to showing the de
idability, the pre
eding argument also illustratesthat slot and �eld 
onstraints are insensitive to graph operations that swit
h thesour
e of a referen
e from obje
t o1 to obje
t o2, as long as �
(o1) = �
(o2). Thisimplies that 
ertain heap properties are not expressible using slot and �eld 
onstraintsalone. In parti
ular, slot 
onstraints do not prevent 
y
les, whi
h justi�es introdu
ingthe a
y
li
ity 
onstraints into the role framework.A.2 Unde
idability of Model In
lusionIn this se
tion we explore the de
idability of the question \is the set of models of oneset of role de�nitions S1 in
luded in the set of models of another set of role de�nitionsS2". This appears to be a more diÆ
ult problem than satis�ability of role de�nitions.Indeed, we proved in Se
tion A.1.4 that the satis�ability is de
idable for a restri
ted
lass of role de�nitions; in this se
tion we prove that the model in
lusion problem isunde
idable for a
y
li
 models.Our role spe
i�
ations are interpreted with respe
t to graphs whi
h need not betrees and 
an even 
ontain 
y
les. It 
an therefore be expe
ted that strong enoughproperties are unde
idable for su
h broad 
lass of models. A 
ommon te
hnique toprove unde
idability for problems on general graphs is to 
onsider the 
lass of graphs
alled grids. 92
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We de�ne a grid as a labelled graph with edges x along the x-axis and edges yalong the y axis.De�nition 52 A grid m � n where m;n � 5 is any graph isomorphi
 to the graphwith nodes V = f1; : : : ; mg � f1; : : : ; ngand edges E = Er [ Ed whereEx = fhhi; ji; x; hi+ j; jii j 1 � i � m� 1; 1 � j � ngEy = fhhi; ji; y; hi; j + 1ii j 1 � i � m; 1 � j � n� 1gThe idea is to redu
e the existen
e of a Turing ma
hine 
omputation history [81, 67℄to the problem on graphs 
onsidered. The rules for 
omputation history are lo
aland thus 
an be expressed using slots and �elds. However, it is not possible to useroles to dire
tly express the 
ondition that a graph is a grid. The problem is that the
ommutativity 
ondition o:x:y = o:y:x for grids 
annot be 
aptured using our role
onstraints, as the following reasoning shows.Assume that there are role de�nitions whi
h des
ribe the 
lass of grids. Sin
egrids do not have any identities hf; gi, we may assume that these role de�nitionsdo not 
ontain identity de
larations. Be
ause the number of roles and in
oming
on�gurations is �nite, there exists a suÆ
iently large grid E, a valid role assignment�
 and a valid in
oming 
on�guration assignment � su
h that for some i; j where2 < i < j, all of the following 
onditions hold:�
(hi; 2i) = �
(hj; 2i)�
(hi; 3i) = �
(hj; 3i)�(hi; 2i) = �(hj; 2i)�(hi; 2i) = �(hj; 2i)De�ne a new graph E 0 in the following way (see Figure A-1).E 0 = (E n fhhi; 2i; x; hi; 3ii; hhj; 2i; x; hj; 3iig)[ fhhi; 2i; x; hj; 3ii; hhj; 2i; x; hi; 3iigWe 
laim that the new graph E 0 also satis�es the same role and in
oming 
on�gurationassignment. To see this, observe that the �eld and slot 
onstraints remain satis�edbe
ause the new edges 
onne
t nodes with same roles as in E, there are no identitiesin role de�nitions, and the graph remains a
y
li
 so a
y
li
ity 
onditions 
annot beviolated. But E 0 is not isomorphi
 to a grid, be
ause every isomorphism would haveto be identity fun
tion on node h1; 1i, and therefore also identity on all nodes h1; iifor i > 1. Next, sin
e y-edges in E 0 are the same as in E, the isomorphism wouldhave to be identity fun
tion on all nodes, and this is not possible due to the 
hangeperformed in the set of x-edges. We 
on
lude there is no set of role de�nitions that
aptures the 
lass of grids. 93
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Figure A-1: A Grid after Role Preserving Modi�
ationThe idea of our unde
idability 
onstru
tion is to use one set of role de�nitions S1to approximate the grid up to the 
ommutativity 
ondition o:x:y = o:y:x as well asto en
ode the transitions of a Turing ma
hine. We then use the another set of rolede�nitions S2 to express the negation of the 
ommutativity 
ondition. The models ofS1 are not in
luded in models of S2 if and only if there exists a model for S1 whi
h isnot a model of S2. Any su
h model will have to be a grid be
ause it satis�es S1 butnot S2, and the roles of S1 will en
ode the a

epting Turing ma
hine 
omputationhistory. Hen
e the question whether su
h a model exists will be equivalent to theexisten
e of an a

epting Turing ma
hine 
omputation history and the unde
idabilityof model in
lusion will follow from the unde
idability of the halting problem.Let us �rst 
onsider how S1 and S2 de�ne the grid used to en
ode the 
omputationhistories. Without the loss of generality, we restri
t ourselves to models that are
onne
ted graphs. We de�ne S1 to be a re�nement of the de�nition for a sparsematrix from Example 3, Figure 2-1. From properties in Se
tion 2.3 we 
on
lude thatthe 
onne
ted models of E are graphs for whi
h there exist m;n � 3 su
h that:1. there is exa
tly one node A1, one node A3, one node A7 and one node A9;2. there are m� 2 nodes A2 (by the 
hoi
e of m);3. there are m � 2 nodes A8 be
ause the a
y
li
 lists along y establish bije
tionwith A2 nodes;4. there are n� 2 nodes A4 (by the 
hoi
e of n);5. there are n � 2 nodes A6 be
ause the a
y
li
 lists along x establish bije
tionwith A4 nodes; 94



www.manaraa.com

6. there are at least max(m � 2; n � 2) nodes A5 (but not ne
essarily more thanthat).
P Q

R
T

S

x

x

y y

Figure A-2: Roles that For
e Violation of the Commutativity ConditionThe idea of role de�nitions S2 is that if a graph satisfying S1 is not a grid, thenthere must exist a node o su
h that o:x:y 6= o:y:x, whi
h means that o:x:y and o:y:x
an be assigned distin
t roles. We 
onstru
t S2 to require the existen
e of �ve distin
tobje
ts o, o:x, o:y, o:x:y and o:y:x with with �ve distin
t roles P , Q, R, and T (seeFigure A-2). We require Q to be referen
ed from P:x, R to be referen
ed from P:y,T from Q:y and S from R:x. In addition to these �ve roles, we in
lude the roles thatensure that are assigned to the remaining nodes of a graph. We 
onstru
t these rolesto ensure that every model of S2 
ontains an obje
t of P role, relying on Property 12.Finally, we explain how to en
ode the existen
e of an a

epting Turing ma
hine
omputation history in the set of role de�nitions S1. Let M be a Turing ma
hine andw any input. We use the fa
t that the 
omputation history of M on input w 
an berepresented as a matrix, and represent the matrix as a grid. Ea
h row of the matrixrepresents 
on�guration of the Turing ma
hine en
oded as a sequen
e of symbols.Be
ause all Turing ma
hine transitions 
hange the tape lo
ally, there is a �nite setW1; : : : ;Wk of 3�2 tiles of symbols that 
hara
terize the matrix in the following way.We 
all a 3 � 2 window in a the matrix a

eptable if it mat
hes a tile. We use thefa
t [81℄ that a matrix represents a 
omputation history of M i�every 3� 2 window in the matrix is a

eptable (A.4)The 
ondition A.4 
an be split into six 
onditions C11; C12; C13; C21; C22; C23 whereCij ensures that every 3 � 2 window is a

eptable if it starts at (i1; j1) where i1 � i(mod 3) and j1 � j (mod 3). Let ea
h tile Wt 
onsist of symbols a11t , a12t , a13t , a21t ,a22t , a23t .The set of role de�nitions S1 is similar to roles in Example 3 ex
ept that it splitsthe role A5 into multiple roles. Ea
h new role of S1 is a sixtuple of positions (ts; is; js),where 1 � s � 6, su
h that ai1j1t1 = ai2j2t2 = : : : = ai6j6t6 . Ea
h position (ts; is; js) in therole sixtuple ensures that one of the 
onditions Cij is satis�ed where s = 3(i� 1)+ j,using the slot 
onstraints. Along the x �eld, if j > 1, a role with position (t; i; j)95
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as k-th proje
tion 
an have only aliases from roles with position (t; i; j � 1) as k-thproje
tion. If j = 1, the aliases 
an be from roles with (t0; i; 3) as the k-th proje
tion.Analogous slot 
onstraints are de�ned for y �elds.An a

epting 
omputation history of the Turing ma
hine M exists i� there existsa matrix where all 3� 2 windows are valid whi
h in turn holds i� there exists a gridwhi
h satis�ed the 
onstraints given by role de�nitions S1. A graph whi
h satis�esrole de�nitions S1 is a grid i� it does not satisfy the role de�nitions S2; su
h graphexists i� the models of S1 are not in
luded in models of S2. Hen
e an a

epting
omputation history of the Turing ma
hine M exists i� the models of S1 are notin
luded in the models of S2. Sin
e the �rst question is unde
idable, so is the modelin
lusion question.
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